• Title/Summary/Keyword: Reinforced concrete school building

Search Result 159, Processing Time 0.024 seconds

Seismic Performance Evaluation of An Old School Building Through Linear Analysis (선형구조해석을 통한 노후된 학교시설 내진성능평가)

  • LEE, Do Hyung;Kim, Taewan;Kim, Seung Re;Chu, Yurim;Kim, Hyun Sik
    • Journal of Industrial Technology
    • /
    • v.38 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • In January 2018, the Ministry of Education published "Seismic design criteria for school buildings" and "Manual for seismic performance evaluation and retrofit of school buildings" to evaluate seismic performances through linear analysis. This paper evaluates the seismic performance of an old school building through the linear analysis. The target building was constructed in the late 1970s, and the seismic-force-resisting system was assumed to be a reinforced concrete moment frame with an un-reinforced masonry wall. As a result of the evaluation, the target building does not satisfy the 'life safety' level of 1.2 times the design spectrum. The average strength ratio of moment frames, an indicator of the level of seismic performance tends to be controlled by beams. However, through the Pohang earthquake, it was known that the short column effect caused by the partially infilled masonry wall caused shear failure of the columns in school buildings. Therefore, it is necessary to improve the linear analysis so that the column controls the average strength ratio of moment frames.

Highly Efficient Checklist for the Safety Management of Reinforced Concrete construction (철근콘크리트 공사의 효율적 안전관리를 위한 체크리스트 제안에 관한 연구)

  • Shim, Un-Jun;Suh, Hyung-Suk;Ahn, Yong-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.7-17
    • /
    • 2010
  • Modern construction technology has been highly systemized, which has simplified the construction methods applied to construction sites. However, on reinforced concrete construction sites, there have recently been many new disasters, and these have been bigger than before due to the heavy dependency on manpower. This study investigates the cause and cases of disasters during reinforced concrete construction. In addition, the study surveyed the psychological condition of construction site personnel in relation to the safety awareness and the causes of disasters, while deriving the basic components related to disasters on construction sites in order to analyze the relationship between each component to suggest an efficient safety management measures checklist. Construction site personnel should utilize the results drawn from this study as a disaster prevention tool to use in a safety education class, and not consider this simply as statistical data, but as a checklist to ensure full awareness of the appropriate priorities for safety categories to utilize in the reinforced concrete construction in order to execute reasonable safety management.

Short term bond shear stress and cracking control of reinforced self-compacting concrete one way slabs under flexural loading

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.709-737
    • /
    • 2014
  • Fibre-reinforced self-compacting concrete (FRSCC) is a high-performance building material that combines positive aspects of fresh properties of self-compacting concrete (SCC) with improved characteristics of hardened concrete as a result of fibre addition. To produce SCC, either the constituent materials or the corresponding mix proportions may notably differ from the conventional concrete (CC). These modifications besides enhance the concrete fresh properties affect the hardened properties of the concrete. Therefore, it is vital to investigate whether all the assumed hypotheses about CC are also valid for SCC structures. In the present paper, the experimental results of short-term flexural load tests on eight reinforced SCC and FRSCC specimens slabs are presented. For this purpose, four SCC mixes - two plain SCC, two steel, two polypropylene, and two hybrid FRSCC slab specimens - are considered in the test program. The tests are conducted to study the development of SCC and FRSCC flexural cracking under increasing short-term loads from first cracking through to flexural failure. The achieved experimental results give the SCC and FRSCC slabs bond shear stresses for short-term crack width calculation. Therefore, the adopted bond shear stress for each mix slab is presented in this study. Crack width, crack patterns, deflections at mid-span, steel strains and concrete surface strains at the steel levels were recorded at each load increment in the post-cracking range.

Shear behavior of RC interior joints with beams of different depths under cyclic loading

  • Xi, Kailin;Xing, Guohua;Wu, Tao;Liu, Boquan
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • Extensive reinforced concrete interior beam-column joints with beams of different depths have been used in large industrial buildings and tall building structures under the demand of craft or function. The seismic behavior of the joint, particularly the relationship between deformation and strength in the core region of these eccentric reinforced concrete beam-column joints, has rarely been investigated. This paper performed a theoretical study on the effects of geometric features on the shear strength of the reinforced concrete interior beam-column joints with beams of different depths, which was critical factor in seismic behavior. A new model was developed to analyze the relationship between the shear strength and deformation based on the Equivalent Strut Mechanism (ESM), which combined the truss model and the diagonal strut model. Additionally, this paper developed a simplified calculation method to estimate the shear strength of these type eccentric joints. The accuracy of the model was verified as the modifying analysis data fitted to the test results, which was a loading test of 6 eccentric joints conducted previously.

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian;Kianoosh Taghikhani;Navid Manouchehri;Mohammad Mahdi Memarpour
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.99-112
    • /
    • 2023
  • This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Seismic repair of reinforced concrete beam-column subassemblages of modern structures by epoxy injection technique

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.543-563
    • /
    • 2002
  • The use of the epoxy pressure injection technique to rehabilitate reinforced concrete beam-column joints damaged by strong earthquakes is investigated experimentally and analytically. Two one-half-scale exterior beam-column joint specimens were exposed to reverse cyclic loading similar to that generated from strong earthquake ground motion, resulting in damage. Both specimens were typical of new structures and incorporated full seismic details in current building codes. Thus the first specimen was designed according to Eurocode 2 and Eurocode 8 and the second specimen was designed according to ACI-318 (1995) and ACI-ASCE Committee 352 (1985). The specimens were then repaired with an epoxy pressure injection technique. The repaired specimens were subjected to the same displacement history as that imposed on the original specimens. The results indicate that the epoxy pressure injection technique was effective in restoring the strength, stiffness and energy dissipation capacity of specimens representing a modem design.

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

Methodology for investigating the behavior of reinforced concrete structures subjected to post earthquake fire

  • Behnam, Behrouz;Ronagh, Hamid R.;Baji, Hassan
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.29-44
    • /
    • 2013
  • Post earthquake fire (PEF) can lead to the collapse of buildings that are partially damaged in a prior ground-motion that occurred immediately before the fire. The majority of standards and codes for the design of structures against earthquake ignore the possibility of PEF and thus buildings designed with those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Life-Safety performance level of structures designed to the ACI 318-08 code after they are subjected to two different earthquake levels with PGA of 0.35 g and 0.25 g. This is followed by a four-hour fire analysis of the weakened structure, from which the time it takes for the weakened structure to collapse is calculated. As a benchmark, the fire analysis is also performed for undamaged structure and before occurrence of earthquake. The results show that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show the damaging effects of post earthquake fire are exacerbated when initiated from second and third floor. Whilst the investigation is for a certain class of structures (regular building, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post earthquake fire in the process of analysis and design and provides some quantitative measures on the level of associated effects.