• Title/Summary/Keyword: Reinforced Walls

Search Result 656, Processing Time 0.021 seconds

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

A Study on the Ecological Characteristics and Changes of the Shigeru Ban Exhibition Space (시게루 반 전시공간의 생태적 특성과 변화 연구)

  • Tian, Hui;Yoon, Ji-Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.147-161
    • /
    • 2022
  • This study examined changes in the ecological characteristics and design characteristics of Ban's exhibition space in three representative temporary exhibition halls and three permanent exhibition halls designed by Ban Shigeru since 2000. Through the investigation of the concepts and characteristics of ecological architecture, the design characteristics of exhibition space, the analysis framework of the design characteristics of exhibition space and the design elements of ecological architecture is obtained. The analysis results show that there are big changes between the temporary exhibition space and the permanent exhibition space in terms of building scale, space composition, function, materials and technology. On the one hand, the temporary exhibition space used recyclable materials, such as paper tubes, containers to be assembled on site into a single-layer space focused on display. The assembly method was simple and the construction period was short. After the exhibition, the exhibition space were dismantled. The materials were either transported to the next display site or recycled and reused. On the other hand, the permanent exhibition space used reinforced concrete as the main structure, and used a large amount of wood and glass materials to construct a multi-layered composite cultural space that separated the exhibition space and the leisure space. In terms of ecological characteristics, the building materials of the temporary exhibition space were recycled and no industrial wastes were generated after the demolition. The permanent exhibition hall uses eco-friendly wood for the roof and walls, so it is easy to replace and repair. Both types of exhibition halls are changing ecological architecture in a more sustainable direction by saving resources and energy through natural light and ventilation.

An Estimation on the Applicability of Hollow FRP Soil Nailing System (중공식 FRP쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Koh, Hyung-Seon;Han, Yong-Hee;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.385-393
    • /
    • 2006
  • Soil nailing is a reinforcement method used for stabilizing excavated walls or slopes. Due to its much advantages such as ease of construction and economical efficiency, use of soil nailing is increased. However, the soil nail has much disadvantages for use in urban area. The soil nail needs to be installed inevitably beyond private land boundary, which causes rent for use. For this reason, removable soil nailing system was developed. However, the removal rate of this system is just about 50¢¦70%. To resolve this problem, the Fiber Reinforced Plastic (FRP) soil nailing system which does not need to be removed and allows for the installation beyond private land, is developed. In this paper, through theoretical and experimental studies in laboratory and field such as prototype tests, pullout tests, we evaluate the stability and behavior characteristics of the FRP soil nailing system. And, numerical analyses using FLAC2D were performed with respect to various soil conditions, where prototype test for excavation wall and pullout tests were carried out. As a result of this study, the FRP soil nailing systems show similar behavior characteristics with those of removable soil nailing system. Finally, considering the serviceability and mechanical stability of FRP soil nailing systems, it is enough to be used as a good alternative of general soil nailing system.

Measurement of Verticality and Joint Gaps of a Near-surface Disposal Facility Vault Through a Mock-up Test for Fill-up Stages (표층처분시설 처분고의 목업테스트를 통한 채움단계별 수직도 및 이음부 벌어짐 측정)

  • Choi, Dong-Ho;Ann, Ki-Yong;Choi, In-Yong;Lee, Hyuk-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.537-544
    • /
    • 2021
  • In order to describe the fill-up stages of a near-surface disposal facility vault, a mock-up test is performed, and its behavior during the fil l -up stages is investigated. On an in-site concrete foundation with a l ength of 6600mm, a width of 6600mm and a thickness of 400mm, a reinforced concrete disposal vaul t is manufactured with 4 precast (PC) corner wal l s and 8 PC side wal l s. 36 wasted drums are pl aced on the 1st fl oor in 6 by 6, and then the empty space is fil l ed with grout fil l er. These processes are repeated up to the 5th floor, and the verticality and the joint gaps are measured for each fill-up stage. The verticality is measured using a level at 6 positions on each side wall (3 positions on the left and right sides, respectivel y), i.e. a total of 24 positions on the 4 side wal l s. The joint gaps are measured at 9 positions on each side wal l (3 positions on the left, center and right sides, respectively), I.e. a total 36 positions on the 4 side walls. To measure the joint gaps, crack tips are installed on the left and right sides of every joint gap, and vernier calipers are used. The measured verticality obtained through the mock-up test was found to be ±0.1° based on the initial stage (ST0), and the result of the joint gap was up to 0.38mm. This appears to have a negligible effect on the structure.

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.