• Title/Summary/Keyword: Reichardt's dye

Search Result 3, Processing Time 0.015 seconds

Highly Sensitive Multichannel Interdigitated Capacitor Based Bitterness Sensor

  • Khan, Md. Rajibur Rahaman;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, we propose a multichannel interdigitated capacitor (IDC) sensor for detecting the bitterness of coffee. The operating principle of the device is based on the variation in capacitance of a sensing membrane in contact with a bitter solution. Four solvatochromic dyes, namely, Nile red, Reichardt's dye, auramine-O, and rhodamine-B, were mixed with polyvinylchloride (PVC) and N,N-dimethylacetamide (DMAC), to create four different types of bitter-sensitive solutions. These solutions were then individually inserted into four interdigitated electrodes (IDEs) using a spin coater, to prepare four distinct IDC sensors. The sensors are capable of detecting bitterness-inducing chemical compounds in any solution, at concentrations of approximately $1{\mu}M$ to 1 M. The sensitivity of the IDC bitterness sensor containing the Reichardt's dye sensing-membrane was approximately 1.58 nF/decade. The multichannel sensor has a response time of approximately 6 s, and an approximate recovery time of 5 s. The proposed sensor offers a stable sensing response and linear sensing performance over a wide measurement range, with a correlation coefficient ($R^2$) of approximately 0.972.

Volatile organic compounds gas sensor using side polished optical fiber (측면 연마 광섬유를 이용한 휘발성 유기 화합물 가스센서)

  • Yeom, Se-Hyuk;Heng, Yuan;Lim, Jun-Woo;Kim, Hak-Rin;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.428-434
    • /
    • 2010
  • In this study, a novel gas sensor based on evanescent field coupling between single mode side polished fiber and solvatochromic dye dispersed polymer waveguide was demonstrated. We fabricated a side polished optical fiber device as a volatile organic compounds gas detector. Solvatochromic dye was coated on the top of the side polished optical fiber to take advantage of evanescent field coupling. The solvatochromism can be defined as the phenomenon whereby a compound changes color, either by a change in the absorption or emission spectra of molecule, when reacted in different VOCs. The device reacted to polarity gases like a hexane, butane, xylene etc. The resonance wavelength was shifted by the xylene concentration which range was 0.1 ppm ~ 100 ppm. Also, the response with the concentration was lineer and the detection limit was 0.1 ppb.

The Formation of Metal (M=Co(II), Ni(II), and Cu(II)) Complexes by Aminosilanes Immobilized within Mesoporous Molecular Sieves

  • 박동호;박성수;최상준
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.291-296
    • /
    • 1999
  • The immobilization of APTMS(3-(2-aminoethylamino)propyltrimethoxysilane) and AAPTMS(3-(2-(2-aminoethyl)aminoethylanino)propyltrimethoxysilane) on the surface of high quality mesoporous molecular sieves MCM-41 and MCM-48 have been confirmed by F.T.-IR spectroscopy, Raman spectroscopy, 29Si solid state NMR, and a surface polarity measurement using Reichardt's dye. The formation of metal (Co(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ)) complexes by immobilized aminosilanes have been investigated by photoacoustic spectroscopy(PAS). The assignment of UV-Vis. PAS bands makes it possible to identify the structure of metal complexes within mesoporous molecular sieves. Co(Ⅱ) ion may be coordinated mainly in a tetrahedral symmetry by two APTMS onto MCM-41, and in an octahedral one by two AAPTMS. Both Ni(Ⅱ) and Cu(Ⅱ) coordinated by aminosilanes within MCM-41 form possibly the octahedral complexes such as [Ni(APTMS)2(H20)2]2+, [Ni(AAPTMS)2]2+, [Cu(APTMS)2(H2O)2]2+, and [Cu(AAPTMS)(H2O)3]2+, respectively. The PAS band shapes of complexes onto MCM-48 are similar to those of corresponding MCM-41 with the variation of PAS intensity. Most of metal ion(Ⅱ) within MCM-41 and MCM-48 are coordinated by aminosilanes without the impregnation on the surface.