• Title/Summary/Keyword: Rehabilitation Engineering

Search Result 1,499, Processing Time 0.037 seconds

The Evaluation of the Short-term Stress Effect on Cognitive Rehabilitation Training Assessment (인지 재활훈련 평가 시 단기 스트레스가 미치는 영향 연구)

  • Jang, Ik-Jae;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.197-202
    • /
    • 2014
  • The cognitive rehabilitation training is important for treating many cognitive impairment conditions, including Parkinson's disease, stroke, and ADHD. In this study, we developed a new evaluation system to improve the measurement of the conventional evaluation systems for cognitive rehabilitation training. The developed system measured the activity of dopamine(DA) and an autonomic nervous system(ANS) with photoplethysmography and electromyography. The results demonstrated that the cognitive capacity was increased but the activity of DA was decreased with unbalanced ANS by short-term stress. Based on the results, the effect of short-term stress should be recognized for the cognitive rehabilitation training.

Electromyography-signal-based muscle fatigue assessment for knee rehabilitation monitoring systems

  • Kim, Hyeonseok;Lee, Jongho;Kim, Jaehyo
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • This study suggested a new EMG-signal-based evaluation method for knee rehabilitation that provides not only fragmentary information like muscle power but also in-depth information like muscle fatigue in the field of rehabilitation which it has not been applied to. In our experiment, nine healthy subjects performed straight leg raise exercises which are widely performed for knee rehabilitation. During the exercises, we recorded the joint angle of the leg and EMG signals from four prime movers of the leg: rectus femoris (RFM), vastus lateralis, vastus medialis, and biceps femoris (BFLH). We extracted two parameters to estimate muscle fatigue from the EMG signals, the zero-crossing rate (ZCR) and amplitude of muscle tension (AMT) that can quantitatively assess muscle fatigue from EMG signals. We found a decrease in the ZCR for the RFM and the BFLH in the muscle fatigue condition for most of the subjects. Also, we found increases in the AMT for the RFM and the BFLH. Based on the results, we quantitatively confirmed that in the state of muscle fatigue, the ZCR shows a decreasing trend whereas the AMT shows an increasing trend. Our results show that both the ZCR and AMT are useful parameters for characterizing the EMG signals in the muscle fatigue condition. In addition, our proposed methods are expected to be useful for developing a navigation system for knee rehabilitation exercises by evaluating the two parameters in two-dimensional parameter space.

A Study on the Rehabilitation Room of Firefighters at Disaster Spot (재난현장 소방공무원의 회복실에 관한 연구)

  • Chae, Jin;Yim, Dong-Kyun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.116-125
    • /
    • 2020
  • This study intends to provide a model for the establishment of a rehabilitation room for the safety and rehabilitation of firefighters by proposing a basis for the establishment of a firefighter rehabilitation room at disaster sites. To achieve the research objectives, a questionnaire, frequency analysis, and variance analysis were conducted to assess the effectiveness of rehabilitation rooms for firefighters. Based on the results of the research, the policy suggestions for operating an effective rehabilitation room are as follows. An organization of the operation of the rehabilitation room should be established at each firefighting headquarters, and human resources must be secured for the operation of the rehabilitation room. In addition, detailed operating standards such as the operation contents of the rehabilitation room's operation manager and its operator, as well as its operation procedures should be prepared. Additionally, training to improve the rehabilitation room and its understanding is needed.

Development of a Rehabilitation Robot for Mckenzie Cervical Exercise (경부 맥킨지 운동용 재활로봇의 개발)

  • Shin, Sang-Hyo;Moon, Inhyuk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • In this paper a cervical rehabilitation robot for Mckenzie exercises to be effective to neck pain relief is proposed. The robot has two degrees of freedom (DOF) for Lateral flexion and extension, Dorsal and Vental flexion which enable user to perform cervical stretching and isometric exercises for neck muscles. The mechanical parts of the cervical rehabilitation robot can be mounted on a back- or head-rest of chair, and user can perform the Mckenzie exercise with seated. In experiments we measured the range of motion of cervical part, EMG signals from neck muscles and the contact forces of a head bracket fixing the head part of user, and then evaluated their performances. From the experimental results, we showed a feasibility of the cervical rehabilitation robot proposed in this study.

Postural Balance Rehabilitation using Virtual Reality Technology (가상현실기술을 이용한 경사침대에서의 자세제어훈련에 관한 연구)

  • Lee, J.S.;Kim, H.S.;Chong, K.H.;Jeong, J.S.;Kim, D.W.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.107-110
    • /
    • 1996
  • We proposed a new system for the postural balance rehabilitation training. For the purpose, we used the virtual hiking system using virtual reality technology. We evaluated the system by measuring the parameters such as path deviation, path deviation velocity, cycling time, and head movement. From our results, we verified the usefulness of virtual reality technology in rehabilitation. Our results showed that this system was effective postural balance rehabilitation training device and might be useful as the clinical equipment.

  • PDF

A Remote Rehabilitation System using Kinect Stereo Camera (키넥트 스테레오 영상을 이용한 원격 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Rehabilitation exercises are the treatments designed to help patients who are in the process of recovery from injury or illness to restore their body functions back to the original status. However, many patients suffering from chronic diseases have found difficulties visiting hospitals for the rehabilitation program due to lack of transportation, cost of the program, their own busy schedules, etc. Also, the program usually contains a few medical check-ups which can cause patients to feel uncomfortable. In this paper, we develop a remote rehabilitation system with bio-signals by a stereo camera. A Kinect stereo camera manufactured by Microsoft corporation was used to recognize the body movement of a patient by using its infrared(IR) camera. Also, we detect the chest area of a user from the skeleton data and process to gain respiratory status. ROI coordinates are created on a user's face to detect photoplethysmography(PPG) signals to calculate heart rate values from its color sensor. Finally, rehabilitation exercises and bio-signal detecting features are combined into a Windows application for the cost effective and high performance remote rehabilitation system.

Development of Sensory Feedback System for Myoelectric Prosthetic Hand (전동의수 사용자를 위한 감각 측정 및 전달 시스템 개발)

  • Bae, Ju-Hwan;Jung, Sung Yoon;Kim, Shinki;Mun, Museong;Ko, Chang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.851-856
    • /
    • 2015
  • This study aimed to develop a sensory feedback system which could measure force and temperature for the user of myoelectric prosthetic hands. The Sensory measurement module consisted of a force sensing resistor to measure forces and non-contact infrared temperature sensor. These sensors were attached on the fingertips of the myoelectric prosthetic hand. The module was validated by using standard weights corresponding to external force and a Peltier module. Sensory transmission module consisted of four vibration motors. Eight vibration patterns were generated by combining motion of each vibration motor and were dependent on kinds and/or magnitude. The module was verified by using standard weigts and water at varying temperatures. There were correlations of force and temperature between the sensory measurement module and standard weight and water. Additionally, exact vibration patterns were generated, indicating the efficacy of the sensory feedback system for the myoelectric prosthetic hand.

Development of Driving System for Power Add-on Drive Wheelchair (수전동 휠체어용 구동장치 개발)

  • Hong, Eung-Pyo;Kim, Yong-Cheol;Kim, Gyoo-Suk;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1110-1118
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity and easier transportability and may be an excellent alternative for the typical manual and powered wheelchairs. The driving system consists of a motor and a motor driver is the most important component of the PADW In this paper, design, implementation, and testing of a driving system for a PADW are presented. To design the output power and torque for the driving system, the equation of motion has been investigated. The motor and driver were fabricated with precise machining and assembled to implement our prototype driving system. The dynamometer test has been carried out using the prototype in order to examine the torque of the system. The experimental results demonstrates that the designed driving system can provide enough output power and efficiency for utilization in a PADW.