• Title/Summary/Keyword: Regulatory T cell

Search Result 300, Processing Time 0.022 seconds

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

Inhibitory Effects of Allium senescens L. Methanol Extracts on Reactive Oxygen Species Production and Lipid Accumulation during Differentiation in 3T3-L1 Cells (두메부추(Allium senescens L.) 메탄올 추출물의 지방세포 내 활성산소종 생성 및 지질축적 억제 효능)

  • Choi, Hye-Young;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.498-504
    • /
    • 2014
  • Allium senescens L. is perennial plant of the Liliaceae family that grows throughout Korea. In this study, we investigated the effect of Allium senescens L. methanol extracts on reactive oxygen species (ROS) production and lipid accumulation during adipogenesis. Our results indicated that 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of Allium senescens L. methanol extracts increased in a dose-dependent manner. Allium senescens L. methanol extracts suppressed ROS production and lipid accumulation during adipogenesis. In addition, Allium senescens L. methanol extracts inhibited the mRNA expression of the pro-oxidant enzyme, such as G6PDH and lead to a reduction in the mRNA levels of the transcription factors, such as sterol regulatory element binding proteins 1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer-binding proteins ${\alpha}$. These results indicate that Allium senescens L. methanol extracts inhibit adipogenesis by modulating ROS production associated with ROS-regulating genes and directly down-regulating adipogenic transcription factors.

Anti-obesity Effect of the Flavonoid Rich Fraction from Mulberry Leaf Extract (뽕잎 추출물 기원 Flavonoid Rich Fraction의 항비만효과)

  • Go, Eun Ji;Ryu, Byung Ryeol;Yang, Su Jin;Baek, Jong Suep;Ryu, Su Ji;Kim, Hyun Bok;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.395-411
    • /
    • 2020
  • Background: This study investigated the anti-obesity effect of the flavonoid rich fraction (FRF) and its constituent, rutin obtained from the leaf of Morus alba L., on the lipid accumulation mechanism in 3T3-L1 adipocyte and C57BL/6 mouse models. Methods and Results: In Oil Red O staining, FRF (1,000 ㎍/㎖) treatments showed inhibition rate of 35.39% in lipid accumulation compared to that in the control. AdipoRedTM assay indicated that the triglyceride content in 3T3-L1 adipocytes treated with FRF (1,000 ㎍/㎖) was reduced to 23.22%, and free glycerol content was increased to 106.04% that of the control. FRF and its major constituent, rutin affected mRNA gene expression. Rutin contributed to the inhibition of Sterol regulatory element binding protein-1c (SREBP-1c) gene expression, and inhibited the transcription factors SREBP-1c, peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, the effect of FRF administration on obesity development in C57BL/6 mice fed high-fat diet (HFD) was investigated. FRF suppressed weight gain, and reduced liver triglyceride and leptin secretion. FRF exerted potential anti-inflammatory effects by improving insulin resistance and adiponectin levels, and could thus be used to help counteract obesity. The mRNA expressions of PPAR-γ, FAS, ACC, and CPT-1 were determined in liver tissue. Quantitative real-time PCR analysis was also performed to evaluate the expression of IL-1β, IL-6, and TNF-α in epididymal adipose tissue. Compared to the control group, mice fed the HFD showed the up-regulation in PPAR-γ, FAS, IL-6, and TNF-α genes, and down-regulation in CPT1 gene expression. FRF treatement markedly reduced the expression of PPAR-γ, FAS, IL-6, and TNF-α compared to those in HFD control, whereas increased the expression level of CPT1. Conclusions: These results suggest that the FRF and its major active constituent, rutin, can be used as effective anti-obesity agents.

Study on the in vitro and in vivo anti-obesity effects of a combination of Syzygium aromaticum L. and Sorbus commixta Hedl. (정향과 마가목 복합물의 in vitro와 in vivo 항비만 효과 연구)

  • Ji Heon Yu;Hui Yeon An;Seong-Soo Roh;Mi-Rae Shin
    • Journal of Nutrition and Health
    • /
    • v.57 no.2
    • /
    • pp.196-210
    • /
    • 2024
  • Purpose: This study investigated the anti-obesity effects of a combination of Syzygium aromaticum L. and Sorbus commixta Hedl. (SS) in vitro and in vivo. Methods: The extracts of Syzygium aromaticum extract (SA) and Sorbus commixta extract (SC) were prepared individually using distilled water. They were mixed in a 1:2 ratio for use in the experiment. To assess the anti-obesity potential of SS in vitro, we examined cell proliferation, cellular triglyceride (TG), and total cholesterol (TC) levels, as well as lipogenesis and β-oxidation in 3T3-L1 cells. To confirm its anti-obesity potential in vivo, C57BL/6J mice were fed a 60% high-fat diet (HFD) to induce obesity. SA alone, SC alone, and their combination compound, SS (at a dosage of 200 mg/kg) were orally administered for 6 weeks. Thereafter, to conduct a comparative evaluation, serum analysis, western blotting of liver tissues, and histopathological analysis were performed. Results: Both SS200 and SS400 significantly inhibited the cellular TG and TC contents in the 3T3-L1 cells. Furthermore, treatment of the cells with SS (at a dose 200 and 400 ㎍/mL) also led to a noticeable regulation of key lipogenic and β-oxidation factors. Treatment of obese mice with SS resulted in a greater reduction in serum leptin and TG levels compared to treatment with the individual compounds (SA and SC). Furthermore, activation of AMP-activated protein kinase α by SS treatment resulted in the suppression of sterol regulatory element-binding proteins (SREBP)-1, leading to the inhibition of acetyl-CoA carboxylase (ACC) expression. Conclusion: Our results suggest that SS may have the potential to prevent obesity through a reduction in the TG and TC levels and regulation of lipogenesis and β-oxidation.

Discharge Patterns and Peripheral Nerve Inputs to Cardiovascular Neurons in the Medulla of Cats: Comparison between the lateral and medial medulla

  • Kim, Sang-Jeong;Lim, Won-Il;Park, Myoung-Kyu;Lee, Jin;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.133-141
    • /
    • 1994
  • The discharge patterns and peripheral nerve inputs to cardiovascular neurons were investigated in rostral ventrolateral medulla (RVLM) and raphe nucleus of cats. The data from the two were compared to determine their roles in cardiovascular regulation and the endogenous analgesic system. Animals were anesthetized with ${\alpha}-chloralose$ and single cell activities were recorded by carbon-filament microelectrode and their relationships with cardiovascular activity were analyzed. In RVLM area, a total of thirty-three cells were identified as cardiovascular neurons. During one cardiac cycle, the mean discharge rate of the neurons was $1.96{\pm}0.29$ and the peak activity was observed 45 ms after the systolic peak of arterial blood pressure. Thirteen cells could be activated antidromically by stimulation of the the $T_2$ intermediolateral nucleus. Forty-three raphe neurons were identified as cardiovascular neurons whose mean discharge rate during one cardiac cycle was $1.02{\pm}0.12$. None of these cells could be activated antidromically. Study of the interval time histogram of RVLM neurons revealed that the time to the first peak was $128{\pm}20.0\;ms$, being shorter than the period of a cardiac cycle. The same parameter found from the raphe neurons was $481{\pm}67.2\;ms$, which was much longer than the cardiac cycle length. Of seventeen RVLM neurons examined ten received only the peripheral $A{\delta}-afferent$ inputs, whereas six RVLM neurons received both $A{\delta}-$ and C-inputs; the remaining one cell received an inhibitory peripheral C-input. In contrast, nine of eleven raphe neurons were found to receive $A{\delta}-inputs$ only. We conclude that the main output of cardiovascular regulatory influences are mediated through the RVLM neurons. The cardiovascular neurons in the raphe nucleus appear to serve as interneurons transferring cardiovascular afferent information to the raphespinal neurons mediating the endogenous analgesic mechanisms.

  • PDF

The effect of rhinovirus on airway inflammation in a murine asthma model

  • Kim, Eugene;Lee, Huisu;Kim, Hyun Sook;Won, Sulmui;Lee, Eu Kyoung;Kim, Hwan Soo;Bang, Kyongwon;Chun, Yoon Hong;Yoon, Jong-Seo;Kim, Hyun Hee;Kim, Jin Tack;Lee, Joon Sung
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.11
    • /
    • pp.482-489
    • /
    • 2013
  • Purpose: The aim of the present study was to investigate the differences in lower airway inflammatory immune responses, including cellular responses and responses in terms of inflammatory mediators in bronchoalveolar lavage fluid (BALF) and the airway, to rhinovirus (RV) infection on asthma exacerbation by comparing a control and a murine asthma model, with or without RV infection. Methods: BALB/c mice were intraperitoneally injected with a crude extract of Dermatophagoides farinae (Df ) or phosphate buffered saline (PBS) and were subsequently intranasally treated with a crude extract of Df or PBS. Airway responsiveness and cell infiltration, differential cell counts in BALF, and cytokine and chemokine concentrations in BALF were measured 24 hours after intranasal RV1B infection. Results: RV infection increased the enhanced pause (Penh) in both the Df sensitized and challenged mice (Df mice) and PBS-treated mice (PBS mice) (P<0.05). Airway eosinophil infiltration increased in Df mice after RV infection (P<0.05). The levels of interleukin (IL) 13, tumor necrosis factor alpha, and regulated on activation, normal T cells expressed and secreted (RANTES) increased in response to RV infection in Df mice, but not in PBS mice (P<0.05). The level of IL-10 significantly decreased following RV infection in Df mice (P<0.05). Conclusion: Our findings suggest that the augmented induction of proinflammatory cytokines, Th2 cytokines, and chemokines that mediate an eosinophil response and the decreased induction of regulatory cytokines after RV infection may be important manifestations leading to airway inflammation with eosinophil infiltration and changes in airway responsiveness in the asthma model.

Effects of Ectopic Expression of Transcription Factors on Adipogenic Transdifferentiation in Bovine Myoblasts (한우(Bos taurus coreanae) 유래 myoblast에서 전사인자 과발현에 의한 지방세포로의 교차 분화 유도)

  • Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1316-1323
    • /
    • 2012
  • The present study was conducted to investigate whether myoblasts can be transdifferentiated into adipocytes by ectopic expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer-binding protein-${\alpha}$ (C/$EBP{\alpha}$), sterol regulatory element binding protein-1c (SREBP1c), and Krueppel-like factor 5 (KLF5), in primary bovine satellite cells. Transcription factors were transiently transfected into primary bovine myoblasts, and the cells were cultured with adipogenic differentiation medium for 2 days and then cultured on growth medium for an additional 8 days. Ectopic expression of $PPAR{\gamma}$ or C/$EBP{\alpha}$ alone was insufficient to induce adipogenesis in myoblasts. However, overexpression of both $PPAR{\gamma}$ and C/$EBP{\alpha}$ in myoblasts was able to induce adipogenic transdifferentiation as indicated by the appearance of mature adipocytes, the induction of adipogenic gene expressions, and the suppression of myogenic gene expressions. In addition, KLF5 and $PPAR{\gamma}$ co-transfected bovine myoblasts were converted to adipocytes but not in cells transfected with only KLF5 expression vector. Overexpression of SREBP1c alone was sufficient to induce transdifferentiation from myoblasts into adipocytes. These results demonstrate that primary bovine satellite cells can be transdifferentiated into adipocytes either by single ectopic expression or combined expression of adipogenic transcription factors in a culture system.

Tristetraprolin Overexpression in Gastric Cancer Cells Suppresses PD-L1 Expression and Inhibits Tumor Progression by Enhancing Antitumor Immunity

  • Guo, Jian;Qu, Huiheng;Shan, Ting;Chen, Yigang;Chen, Ye;Xia, Jiazeng
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.653-664
    • /
    • 2018
  • The RNA-binding protein tristetraprolin (TTP) binds to adenosine-uridine AU-rich elements in the 3'-untranslated region of messenger RNAs and facilitates rapid degradation of the target mRNAs. Therefore, it regulates the expression of multiple cancer and immunity-associated transcripts. Furthermore, a lack of TTP in cancer cells influences cancer progression and predicts poor survival. Although the functions of TTP on cancer cells have previously been researched, the mechanism of TTP on the interaction between cancer cells with their micro-environment remains undiscovered. In this study, we admed to determine the role of cancer cell TTP during the interaction between tumor and immune cells, specifically regulatory T cells (Tregs). We evaluate the capability of TTP to modulate the antitumor immunity of GC and explored the underlying mechanism. The overexpression of TTP in GC cells dramatically increased peripheral blood mononuclear lymphocyte (PBML) -mediated cytotoxicity against GC cells. Increased cytotoxicity against TTP-overexpressed GC cells by PBMLs was determined by Treg development and infiltration. Surprisingly, we found the stabilization of programmed death-ligand 1 (PD-L1) mRNA was declining while TTP was elevated. The PD-L1 protein level was reduced in TTP-abundant GC cells. PD-L1 gas been found to play a pivotal role in Treg development and functional maintenance in immune system. Taken together, our results suggest the overexpression of TTP in GC cells not only affects cell survival and apoptosis but also increases PBMLs -mediated cytotoxicity against GC cells to decelerate tumor progression. Moreover, we identified PD-L1 as a critical TTP-regulated factor that contributes to inhibiting antitumor immunity.

Immunoregulatory Effects of Water Extracts of Scutellariae Radix in DSS-Induced Inflammatory Bowel Disease Animal Model (DSS로 유도된 염증성 장 질환 동물 모델에서 황금 열수 추출물이 면역 조절 기능에 미치는 영향)

  • Lee, Sun-Hee;Lim, Beong-Ou;Choue, Ryo-Won
    • Journal of Nutrition and Health
    • /
    • v.37 no.6
    • /
    • pp.431-439
    • /
    • 2004
  • Scutellariae Radix (Scu.), one of the immune-regulatory substances, is recognized to play the role in the metabolic process of inflammation, allergy and immunity. It has been traditionally used in the Oriental medicine to treat inflammatory bowel diseases (IBD). The purpose of this study was to evaluate the effects of water extracts of Scutellariae Radix on the spleen lymphocyte immune function in the Balb/c female mice treated with dextran sodium sulfate (DSS) to induce colitis. Water extract of Scutellariae Radix (100 mg/kg) and sulfasalazine (50 mg/kg) were administrated orally for 2 weeks of experimental period. Mice were divided into three experimental groups randomly: DSS group (5% DSS was ad libitum for 5 days) as control group, DSS + Scu. (water extracts of Scutellariae Radix for 2 weeks after 5% DSS was ad libitum for 5 days) as experimental group, and DSS + Sulfasalazine group (Sulfasalazine for 2 weeks after 5% DSS was ad libitum for 5 days) as positive control group. Levels of Ig A, Ig E, CD4$^{+}$, CD8$^{+}$, TNF-$\alpha$ and other cytokines were measured. Treatment of DSS for 5 days induced bowel inflammation and the treatment with Scu. water exteract and sulfasalazine significantly recovered the damage. The length of intestine of DSS group was significantly shorter than that of other groups. The serum and fecal concentration of Ig A of SS + Scu group was higher than those of DSS group. The contents of CD4$^{+}$ T cells was higher in the DSS + Scu. group than the other groups and CD8$^{+}$ T cells was the lowest in DSS + Sulfasalazine group. The Ig A level of cultured supernatant of spleen lymphocyte was the highest, while the Ig E level was the lowest in SS + Scu group. The concentration of TNF-$\alpha$, cytokine secreted from the Th1 cell in the supernatant spleen lymphocyte, was the highest in the DSS group and the lowest in the DSS + Scu. group. The concentration of IFN-${\gamma}$ and ll...-12 was lower in the DSS + Scu. group than those of the other groups. The concentration of IL-4 in the supernatant of spleen lymphocyte was the lowest in the DSS + Scu. group but IL-10 was not significantly different. Based on these findings, water extract of Scutellariae Radix exhibited the inhibitory effect via IL-4 production thereby inhibited the production of Ig E and strengthened immune system, and alleviated injury in DSS- induced colitis mice model.

Biological Properties of Propolis Isolated from Honeybees (프로폴리스의 생물학적 특성)

  • Kim, Sung-Kuk;Woo, Soon-Ok;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.686-697
    • /
    • 2021
  • Propolis is a resinous substance produced by honeybees, which they use to protect their hives. Honeybees produce propolis by mixing exudates from the various trees and plants with saliva and beeswax. It has been used since around 300 B.C. as a folk medicine to cure wounds. Propolis contains many physiologically active components, such as flavonoids, phenolic compounds, and beeswax. Because of its functional components, propolis has a wide spectrum of biological applications. The compounds in propolis and its biological activity can vary according to the location of nectar source and extraction method. Propolis is most commonly known for its anti-microorganism activity against bacteria, viruses, and fungi. Artepillin C and caffeic acid phenethyl ester (CAPE) have been identified as regulatory compounds that reduce inflammation and exert immunosuppressive reactions on T lymphocytes. Through its anti-inflammatory activity, propolis exhibits anti-tumor activity, including the inhibition of cancer cell proliferation, the blocking of tumor signaling cascades, and antiangiogenesis. However, for the more apply of propolis its analysis of nectar source, identifying of propolis compound, the molecular mechanism of propolis and the investigation of compounds synergistic effects are essential. In this study, we described the physiological activity of propolis isolated from honeybees.