• 제목/요약/키워드: Regulatory B cell

검색결과 225건 처리시간 0.034초

Pathogenesis of Minimal Change Nephrotic Syndrome: A Review of the Underlying Molecular Mechanisms

  • Yang, Eun Mi
    • Childhood Kidney Diseases
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Nephrotic syndrome (NS) is the most common glomerular disorder in childhood, and a vast majority of cases are idiopathic. The precise cause of this common childhood disease is not fully elucidated despite significant advancements in our understanding of podocyte biology. Idiopathic NS has been considered "a disorder of T-cell function" mediated by a circulating factor that alters podocyte function resulting in massive proteinuria since the last four decades. Several circulatory factors released from T-cells are considered to be involved in pathophysiology of NS; however, a single presumptive factor has not been defined yet. Extended evidence obtained by advances in the pathobiology of podocytes has implicated podocytes as critical regulator of glomerular protein filtration and podocytopathy. The candidate molecules as pathological mediators of steroid-dependent NS are CD80 (also known as B7-1), hemopexin, and angiopoietin-like 4. The "two-hit" hypothesis proposes that the expression of CD80 on podocytes and ineffective inhibition of podocyte CD80 due to regulatory T-cell dysfunction or impaired autoregulation by podocytes results in NS. Recent studies suggest that not only T cells but also other immune cells and podocytes are involved in the pathogenesis of MCNS.

Helicobacter pylori inhibited cell proliferation in human periodontal ligament fibroblasts through the Cdc25C/CDK1/cyclinB1 signaling cascade

  • Li, Huanying;Liang, Dongsheng;Hu, Naiming;Dai, Xingzhu;He, Jianing;Zhuang, Hongmin;Zhao, Wanghong
    • Journal of Periodontal and Implant Science
    • /
    • 제49권3호
    • /
    • pp.138-147
    • /
    • 2019
  • Purpose: Several studies have shown that the oral cavity is a secondary location for Helicobacter pylori colonization and that H. pylori is associated with the severity of periodontitis. This study investigated whether H. pylori had an effect on the periodontium. We established an invasion model of a standard strain of H. pylori in human periodontal ligament fibroblasts (hPDLFs), and evaluated the effects of H. pylori on cell proliferation and cell cycle progression. Methods: Different concentrations of H. pylori were used to infect hPDLFs, with 6 hours of co-culture. The multiplicity of infection in the low- and high-concentration groups was 10:1 and 100:1, respectively. The Cell Counting Kit-8 method and Ki-67 immunofluorescence were used to detect cell proliferation. Flow cytometry, quantitative real-time polymerase chain reaction, and western blots were used to detect cell cycle progression. In the high-concentration group, the invasion of H. pylori was observed by transmission electron microscopy. Results: It was found that H. pylori invaded the fibroblasts, with cytoplasmic localization. Analyses of cell proliferation and flow cytometry showed that H. pylori inhibited the proliferation of periodontal fibroblasts by causing G2 phase arrest. The inhibition of proliferation and G2 phase arrest were more obvious in the high-concentration group. In the low-concentration group, the G2 phase regulatory factors cyclin dependent kinase 1 (CDK1) and cell division cycle 25C (Cdc25C) were upregulated, while cyclin B1 was inhibited. However, in the high-concentration group, cyclin B1 was upregulated and CDK1 was inhibited. Furthermore, the deactivated states of tyrosine phosphorylation of CDK1 (CDK1-Y15) and serine phosphorylation of Cdc25C (Cdc25C-S216) were upregulated after H. pylori infection. Conclusions: In our model, H. pylori inhibited the proliferation of hPDLFs and exerted an invasive effect, causing G2 phase arrest via the Cdc25C/CDK1/cyclin B1 signaling cascade. Its inhibitory effect on proliferation was stronger in the high-concentration group.

A Fuzzy Continuous Petri Net Model for Helper T cell Differentiation

  • Park, In-Ho;Na, Do-Kyun;Lee, Kwang-H.;Lee, Do-Heon
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.344-347
    • /
    • 2005
  • Helper T(Th) cells regulate immune response by producing various kinds of cytokines in response to antigen stimulation. The regulatory functions of Th cells are promoted by their differentiation into two distinct subsets, Th1 and Th2 cells. Th1 cells are involved in inducing cellular immune response by activating cytotoxic T cells. Th2 cells trigger B cells to produce antibodies, protective proteins used by the immune system to identify and neutralize foreign substances. Because cellular and humoral immune responses have quite different roles in protecting the host from foreign substances, Th cell differentiation is a crucial event in the immune response. The destiny of a naive Th cell is mainly controlled by cytokines such as IL-4, IL-12, and IFN-${\gamma}$. To understand the mechanism of Th cell differentiation, many mathematical models have been proposed. One of the most difficult problems in mathematical modeling is to find appropriate kinetic parameters needed to complete a model. However, it is relatively easy to get qualitative or linguistic knowledge of a model dynamics. To incorporate such knowledge into a model, we propose a novel approach, fuzzy continuous Petri nets extending traditional continuous Petri net by adding new types of places and transitions called fuzzy places and fuzzy transitions. This extension makes it possible to perform fuzzy inference with fuzzy places and fuzzy transitions acting as kinetic parameters and fuzzy inference systems between input and output places, respectively.

  • PDF

Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity

  • Huh, Jin Young;Park, Yoon Jeong;Ham, Mira;Kim, Jae Bum
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.365-371
    • /
    • 2014
  • Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.

Regulatory Effect of Fresh Rehmanniae Radix Extract on the in Vitro Production of Proinflammatory Cytokines in Pristane-Induced Lupus Mice

  • Chae, Byeong-Suk;Yang, Jae-Heon
    • Natural Product Sciences
    • /
    • 제13권4호
    • /
    • pp.322-327
    • /
    • 2007
  • Fresh Rehmanniae radix is known as a traditional medicine with anti-inflammatory and antioxidant activities. However, whether Rehmanniae radix attenuates autoimmune inflammation in lupus models characterized by T cell-dependent autoimmune disease including overproduction of proinflammatory cytokines, loss of T cell tolerance, and B cell hyperactivity remains unclear. We investigated the effect of fresh Rehmanniae radix methanol extracts (RGMeOH) on the in vitro overproduction of proinflammatory cytokines by immune cells from pristaneinduced lupus BALB/c mice. These results showed that RGMeOH remarkably attenuated Con A-increased overproduction of proinflammatory cytokines, such as IL-2, IFN-${\gamma}$, IL-6 and IL-10 by splenocytes from pristaneinduced lupus mice. RGMeOH greatly reduced LPS-induced production of TNF-${\alpha}$ by splenic macrophages from pristane-induced lupus mice, while significantly enhanced LPS-induced production of IL-10 but did not alter IL-6 by splenic macrophages and splenocytes. These findings suggest that RGMeOH may ameliorate lupus systemic inflammatory autoimmunity via down-regulation of TNF-${\alpha}$ and T cell-dependent cytokine production.

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • 제4권2호
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

The Anti-inflammatory Mechanism of Pu-erh Tea via Suppression the Activation of NF-κB/HIF-1α in LPS-stimulated RAW264.7 Cells

  • Su-Jin Kim
    • 대한의생명과학회지
    • /
    • 제29권2호
    • /
    • pp.58-65
    • /
    • 2023
  • Pu-erh tea, a popular and traditional Chinese tea, possesses various health-promoting effects, including inhibiting tumor cell progression and preventing type II diabetes and neurodegenerative disorders. However, the precise anti-inflammatory mechanisms are not well understood. In present study, we elucidated the anti-inflammatory mechanism of Pu-erh tea in lipopolysaccharide (LPS)-activated RAW264.7 cells. We explored the effects of Pu-erh tea on the levels of inflammatory-related genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) in LPS-activated RAW264.7 cells. Moreover, we investigated its regulatory effects on nuclear factor-kappa B (NF)-κB and hypoxia-inducible-factor (HIF)-1α activation. The findings of this study demonstrated that Pu-erh tea inhibited the LPS-increased inflammatory cytokines and PGE2 release, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory mechanism of Pu-erh tea occurs via the inhibition of NF-κB and HIF-1α activation. Conclusively, these findings provide experimental evidence that Pu-erh tea may be useful candidate in the treatment of inflammatory-related diseases.

Vipera Lebetina Turanica 사독의 PC-3 세포성장 억제 (Snake Venom from Vipers Lebetina Turanica Inhibits Tumor in a PC-3 Cell Xenograft Model and PC-3 Cell Growth in Vitro)

  • 강준;송호섭
    • Journal of Acupuncture Research
    • /
    • 제24권2호
    • /
    • pp.1-14
    • /
    • 2007
  • 목적 : 이 연구는 Vipera lebetina turanica의 사독약침파(蛇毒藥鍼波)(Snake venom toxin, SVT)이 in vitro에서 $NF-{\kappa}B$의 활성억제와 apoptosis 관련 단백질의 발현 조절을 통하여 세포자멸사(Apoptosis)를 유도하는지 in vivo에서 또한 전립선 암세포주인 PC-3 세포의 성장을 억제하는지 살펴보고자 하였다. 방법 : SVT를 처리한 후 PC-3의 성장억제를 관찰하기 위해 WST-1 assay, CCK-8 assay를 시행하였고,Apoptosis evaluation에는 DAPI, TUNEL staining assay를 시행하였으며,Apoptosis regulatory proteins의 변화 관찰에는 western blot analysis를 시행하였고,apoptosis와 연관된 $NF-{\kappa}B$의 활성 변화를 관찰하기 위해 EMSA시행하였으며,SVT의 핵내이동을 관찰하기 위해 Immunofluorescence Staining, Confocal immunocytochemistry를 시행하였으며,전립암세포의 종양형성에는 흉선을 제거한 쥐에 Tumorigenecity study를 시행하였다. 결과 : PC-3 세포에 SVT를 처리한 후,전립선 암세포의 성장,Apoptosis의 유발,Apoptosis관련 단백질의 발현,$NF-{\kappa}B$의 활성,SVT의 PC-3세포 핵내 이동여부 및 흉선제거 후 PC-3 세포를 이식한 쥐의 종양형성과정에 미치는 영향을 관찰하여 다음과 같은 결과를 얻었다. 1. PC-3 세포에서 SVT를 처리한 후 세포성장이 억제되고,세포자멸사가 유도되며,조절인자인 p53, caspase-3, -9는 증가되었고,Bcl-2는 감소되었다. 2. PC-3 세포에서 SVT를 처리한 후 $NF-{\kappa}B$의 활성이 유의하게 감소되었다. 3. DAPI로 염색된 상태에서 SVT가 PC-3 세포의 핵내로 이통되는 것이 관찰되었다. 4. 흉선제거 후 전립선 암세포주를 이식한 쥐에서 SVT를 피내로 주입한 결과 전립선암의 크기와 무게가 유의하게 감소하였다. 결론 : 이상의 결과는 SVT가 $NF-{\kappa}B$의 활성 억제를 통하여 인간 전립선암세포주인 PC-3의 세포자멸사를 유발함으로써 증식억제 효과가 있음을 입증한 것이며,이를 재확인한 생체 연구에서의 긍정적인 결과는 향후 SVT의 전립선암의 예방과 치료에 대한 효과적인 치료제 개발에 초석이 될 것으로 기대된다.

  • PDF

프로테옴 분석에 의한 Bacillus subtilis PyrR 돌연변이체의 특성 (Characterization of a PyrR-deficient Mutant of Bacillus subtilis by a Proteomic Approach)

  • 설경조;조현수;김사열
    • 한국미생물·생명공학회지
    • /
    • 제39권1호
    • /
    • pp.9-19
    • /
    • 2011
  • Bacillus subtilis의 pyrimidine biosynthetic (pyr) operon은 UMP의 de nove 생합성에 관여하는 enzyme들을 encode할 뿐만 아니라, 조절단백질인 PyrR도 encode한다. PyrR은 pyr mRNA-binding 조절 기능과 uracil phosphoribosyltransferase activity를 동시에 가지는 bifunctional 단백질이다. 본 연구에서는 Proteomic analysis를 이용하여 Uracil - 환경에서 DB104${\Delta}$pyrR의 단백질 패턴을 분석하여 단백질 레벨에서 PyrR 단백질의 실질적인 조절 양상을 관찰하였다. 두 균주의 세포질 단백질은 다양한 발현의 차이를 보였으며, Silver 염색된 2D-gel의 pI 4~10 사이에서는 1,300여개의 단백질이 검출되었으며, 단백질 발현 차이를 보이는 172개의 spot 중에서 42개의 단백질이 identification 되었다. 그 결과 pyr operon의 단백질(PyrAa, PyrAb, PyrB, PyrC, PyrD, and PyrF)이 모두 Up regulation이 이루어지고 있음을 확인할 수 있었으며, 이것은 단백질 레벨에서 Pyrimidine 생합성 과정이 PyrR에 의해서 정확히 Regulation 되어짐을 확인할 수 있었다. 또한 Pyrimidine 생합성의 Up regulation과 Down regulation 상태의 단백질의 패턴 양상도 분석할 수 있게 되었다. Pyrimidine의 생합성 과정은 DNA를 구성하는 기본적인 구성 요소를 생산하는 과정으로서 여러가지 Metabolism 가운데 중요한 위치를 차지하고 있다. 만약 Pyrimidine의 생합성 과정이 Over- expression된다면 다른 Metabolism의 균형에도 변화가 올 것이다. Proteomics Analysis에 이용한 DB104${\Delta}$pyrR 균주는 Pyrimidine 생합성의 조절에 관여하는 PyrR knock out 균주로서 Uracil - 환경에서는 전체적인 Pyrimidine 생합성 조절이 Up regulation이 되어지므로 Up regulation 동안 어떤 Metabolism에 영향을 주는지 관찰을 할 수 있게 되었다. 특히 Amino Acid Metabolism에 관계있는 단백질의 Up regulation이 이루어짐을 관찰할 수 있었으며 이것은 현재 각광을 받고 있는 단백질 산업에 응용함으로써 산업적으로 많은 기대를 할 수 있을 것으로 예상되어진다.

Cadmium Induces Cell Cycle Arrest and Change in Expression of Cell Cycle Related Proteins in Breast Cancer Cell Lines

  • Lee Young Joo;Kang Tae Seok;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Oh Ji Young;Kwon Hoonjeong;Han Soon Young
    • Toxicological Research
    • /
    • 제21권1호
    • /
    • pp.77-85
    • /
    • 2005
  • Cadmium is an environmental pollutant exposed from contaminated foods or cigarette smoking and known to cause oxidative damage in organs. We investigated the cadmium-induced apoptosis and cell arrest in human breast cancer cells, MCF-7 cells and MDA-MB-231 cells. Obvious apoptotic cell death was shown in CdCl₂ 100 μM treatment for 12 hr, which were determined by DAPI staining and flow cytometric analysis. In cell cycle analysis, MCF-7 cells and MDA-MB-231 cells were arrested in S phase and G2/M phase respectively. These could be explained by the induction of cell cycle inhibitory protein, p21/sup Waf1/Cip1/ and p27/sup Kip1/, expression and reduction of cyclin/Cdk complexes in both cell lines. The decreased expression of cyclin A and Cdk2 in MCF-7 cells and cyclin B1 and Cdc2 in MDA-MB-231 cells were consistent with the flow cytometric observation. p-ERK expression was increased dose-dependent manner in both cell lines. It suggests that ERK MAPK pathway are involved in cadmium-induced cell cycle arrest and apoptosis. Moreover, cotreatment of zinc (100 μM, 12 hr) recovered the cadmium-induced cell arrest in both cells, which shows cadmium-induced oxidative stress mediates apoptosis and cell cycle arrest in human breast cancer cells.