• 제목/요약/키워드: Regularization

검색결과 487건 처리시간 0.028초

Double 𝑙1 regularization for moving force identification using response spectrum-based weighted dictionary

  • Yuandong Lei;Bohao Xu;Ling Yu
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.227-238
    • /
    • 2024
  • Sparse regularization methods have proven effective in addressing the ill-posed equations encountered in moving force identification (MFI). However, the complexity of vehicle loads is often ignored in existing studies aiming at enhancing MFI accuracy. To tackle this issue, a double 𝑙1 regularization method is proposed for MFI based on a response spectrum-based weighted dictionary in this study. Firstly, the relationship between vehicle-induced responses and moving vehicle loads (MVL) is established. The structural responses are then expanded in the frequency domain to obtain the prior knowledge related to MVL and to further construct a response spectrum-based weighted dictionary for MFI with a higher accuracy. Secondly, with the utilization of this weighted dictionary, a double 𝑙1 regularization framework is presented for identifying the static and dynamic components of MVL by the alternating direction method of multipliers (ADMM) method successively. To assess the performance of the proposed method, two different types of MVL, such as composed of trigonometric functions and driven from a 1/4 bridge-vehicle model, are adopted to conduct numerical simulations. Furthermore, a series of MFI experimental verifications are carried out in laboratory. The results shows that the proposed method's higher accuracy and strong robustness to noises compared with other traditional regularization methods.

전기 임피던스 단층촬영법에서 잔류오차 기반의 반복적 조정기법을 이용한 영상 복원 (Image Reconstruction Using Iterative Regularization Scheme Based on Residual Error in Electrical Impedance Tomography)

  • 강숙인;김경연
    • 전기전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.272-281
    • /
    • 2014
  • 전기 임피던스 단층촬영법을 이용한 정적 영상 복원에서 대표적으로 사용되고 있는 복원 알고리즘은 modified Newton-Raphson(mNR) 알고리즘으로 수렴 속도 및 추정 정확도 측면에서 비교적 다른 알고리즘들에 비해 좋은 성능을 나타낸다. mNR 알고리즘에서는 측정 전압과 계산 전압과의 차이, 즉 잔류오차를 최소화하도록 목적함수를 설정하고 이를 반복 연산하여 내부의 저항률 분포를 추정한다. 이때 EIT 역문제의 비정치성을 완화시키기 위해 조정방법을 사용하며 조정인자에 따라 서로 다른 영상 복원 성능을 나타낸다. 기존 기법에서는 반복 연산마다 일정한 상수 값의 조정인자를 사용하기 때문에 대상 물체의 내부 상태가 변하거나 측정 잡음 등이 있는 경우 때때로 조정인자에 따라 영상 복원이 수렴되지 않는다. 따라서 본 논문에서는 영상 복원 수렴 및 성능을 개선하기 위하여 잔류오차에 기반하여 반복 연산마다 자동적으로 조정인자를 수정하는 기법을 제안하였다. 시뮬레이션과 실험을 수행하여 제안된 기법의 영상 복원성능을 평가한 결과 비교적 양호한 성능을 나타내었다.

Elastic Net를 이용한 시간 지연 추정 알고리즘 (Time delay estimation algorithm using Elastic Net)

  • 임준석; 이근화
    • 한국음향학회지
    • /
    • 제42권4호
    • /
    • pp.364-369
    • /
    • 2023
  • 두 개 수신기에 들어오는 신호 간의 시간 지연 추정 기술은 수중 음향 뿐만 아니라 실내 음향 및 로보틱스에 이르기까지 다양한 분야에서 응용되고 있는 기술이다. 시간 지연 추정 기술에는 수신기 사이 상호 상관으로부터 시간 지연량을 추정하는 방법이 한 기술 부류이고, 수신기 사이의 시간 지연을 파라메트릭 모델링을 하여 그 파라미터를 시스템 인식의 방법으로 추정하는 기술 부류가 있다. 두 부류 중 후자의 경우 시스템의 파라미터 중에서 지연과 직접 관련 있는 파라미터는 전체 중 극히 일부라는 특성이 있다. 이 특성을 이용하여 Lasso 정규화 같은 방법으로 추정 정확도를 높이기도 한다. 그러나 Lasso 정규화의 경우 필요한 정보가 소실되는 경우가 발생한다. 본 논문에서는 이를 보완하기 위해서 Lasso 정규화에 Ridge 정규화를 덧붙인 Elastic Net을 사용한 방법을 제안한다. 제안한 방법을 기존의 일반 상호 상관(Generalized Cross Correlation, GCC) 방법 및 Lasso 정규화를 사용한 방법과 비교하여, 백색 가우시안 신호원 및 유색 신호원에서도 추정 오차가 매우 적음을 보인다.

다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식 (A Mixed Norm Image Restoration Algorithm Using Multi Regularization Parameters)

  • 최권열;김명진;홍민철
    • 한국통신학회논문지
    • /
    • 제32권11C호
    • /
    • pp.1073-1078
    • /
    • 2007
  • 본 논문에서는 다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식을 제안한다. 임의의 분포를 갖는 첨가 노이즈를 효율적으로 제거하기 위해 정규화 완화 $l_2$ 함수와 정규화 완화 $l_4$ 함수를 결합한 새로운 혼합 norm 정규화 완화 함수가 유도된다. 각 완화 함수의 완화도를 제어하기 위해 개별적인 정규화 매개 변수가 정의되고, 정규화 완화 $l_2$ 함수와 정규화 완화 $l_4$ 함수의 상대적 기여도를 제어하기 위한 혼합 norm 정규화 매개 변수가 kurtosis를 이용해 정의된다. 안정적인 해를 얻기 위해 반복기법이 사용되었으며, 이들의 수렴 여부가 분석되었다. 다양한 분포를 갖는 첨가 노이즈가 실험에 사용되었으며, 이를 통해서 제안된 방식의 성능을 평가할 수 있었다.

이완변수를 고려한 영상의 정칙화 반복 복원 (Regularized Iterative Image Restoration with Relaxation Parameter)

  • 홍성용;이태홍
    • 한국통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.91-99
    • /
    • 1994
  • 잡음이 섞인 흐려진 영상의 복원에서 구속 조건으로서 이완 변수와 정칙화 변수를 적용한 정칙화 반복 복원 방법을 제시 하였다. Blemond등에 의해 제시된 종전의 정칙화 반복 복원 방법은 정칙화 연산자로서 리플라시안 여파기를 사용하였으나 정칙화 변수와 이완 변수를 고정된 상수로 처리하는 반면, 본 논문에서는 (I.H)를 정칙화 연산자로서 사용하였고, 영상의 사전 정보를 고려하여 각 화소마다 적응성있게 가변되는 두 종류의 구속조건을 정칙화 반복 복원 방법에 적용하였다. 실험 결과를 통하여 제시한 방법이 윤곽부분에서는 피묻현상이 감소하였으며, 평면부분에서는 잡음의 억제가 현저하였음을 알 수 있었다.

  • PDF

적응적인 방향성 정칙화 연산자를 이용한 반복 영상복원 (Iterative Image Restoration using Adaptive Directional Regularization)

  • 김용훈;신현진;이태홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.862-867
    • /
    • 2006
  • 영상을 처리하는 과정에서 광학시스템과 전자회로의 특성으로 인해 흐려지고, 잡음으로 훼손된 영상을 복원하는 경우에 일반적으로 정칙화 반복복원방법이 사용된다. 기존의 방법은 영상의 국부적인 특성을 고려하지 않고, 영상 전체에 일률적으로 정칙화 연산자를 사용함으로써 에지의 주변영역에서는 링잉현상을 초래하고, 평면영역에서도 잡음증폭을 피할 수 없으며, 또한 시각적으로 효율적이지 못한 면이 있다. 이러한 문제점을 개선하기 위하여 본 논문에서는 방향성 정칙화 연산자를 사용하여 평면영역과 에지영역의 특성을 고려하여 적응적으로 처리하는 반복복원방법을 제안한다. 실험결과, 제안된 방법은 기존의 방법에 비해 평면영역에서의 잡음 증폭을 억제하는 동시에 에지영역의 경계를 더욱 선명하게 복원함을 알 수 있었다.

훼손된 영상에서의 연산자 적응 특성 분석 I : 가우시안으로 흐려지고 20dB 잡음이 추가된 훼손된 영상 (Analysis I of Operator Adaptive Characteristic in the Noisy-Blurred Images: Gaussian blurred and additive 20dB noise)

  • 전우상;한군희
    • 한국산학기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.1685-1692
    • /
    • 2010
  • 정칙화 반복처리 과정에 사용되는 정칙화 연산자는 라플라시안 연산자를 주로 사용하고 있으나, 일반적으로 미분 연산자를 사용하게 되어있다. 본 논문에서는 정칙화 연산자로서의 일반적인 미분연산자들과 제안된 연산자의 성능을 비교, 검토하여 분석하였다. 가우시안에 의해 훼손된 영상에서는, 윤곽부분은 제안된 연산자가 기존에 사용된 연산자보다 수렴성 및 복원효과가 뛰어나며 평면부분에서는 기존의 연산자가 제안된 연산자보다 안정적으로 수렴함을 알 수 있었다. 정칙화 이론은 잡음의 평활화와 윤곽의 복원을 동시에 고려하여 처리하기 때문에 영역을 평면부분과 중간부분 그리고 윤곽부분으로 나누어서 처리결과를 비교하였다.

An Application of the Clustering Threshold Gradient Descent Regularization Method for Selecting Genes in Predicting the Survival Time of Lung Carcinomas

  • Lee, Seung-Yeoun;Kim, Young-Chul
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.95-101
    • /
    • 2007
  • In this paper, we consider the variable selection methods in the Cox model when a large number of gene expression levels are involved with survival time. Deciding which genes are associated with survival time has been a challenging problem because of the large number of genes and relatively small sample size (n<

L1-norm regularization을 통한 SGMM의 state vector 적응 (L1-norm Regularization for State Vector Adaptation of Subspace Gaussian Mixture Model)

  • 구자현;김영관;김회린
    • 말소리와 음성과학
    • /
    • 제7권3호
    • /
    • pp.131-138
    • /
    • 2015
  • In this paper, we propose L1-norm regularization for state vector adaptation of subspace Gaussian mixture model (SGMM). When you design a speaker adaptation system with GMM-HMM acoustic model, MAP is the most typical technique to be considered. However, in MAP adaptation procedure, large number of parameters should be updated simultaneously. We can adopt sparse adaptation such as L1-norm regularization or sparse MAP to cope with that, but the performance of sparse adaptation is not good as MAP adaptation. However, SGMM does not suffer a lot from sparse adaptation as GMM-HMM because each Gaussian mean vector in SGMM is defined as a weighted sum of basis vectors, which is much robust to the fluctuation of parameters. Since there are only a few adaptation techniques appropriate for SGMM, our proposed method could be powerful especially when the number of adaptation data is limited. Experimental results show that error reduction rate of the proposed method is better than the result of MAP adaptation of SGMM, even with small adaptation data.

윤곽 방향을 고려한 적응 정칙화 영상 복원 (Image restoration by Adaptive Regularization Considering the Edge Direction)

  • 김태선
    • 한국통신학회논문지
    • /
    • 제25권9B호
    • /
    • pp.1588-1595
    • /
    • 2000
  • 렌즈의 초점이 맞지 않아 흐려지고 잡음으로 훼손된 영상을 복원하는 경우에 일반적으로 정칙화 반복복원방법이 사용된다. 기존의 방법은 영상의 국부적인 특성을 고려하지 않고 영상전체에 일률적으로 정칙화를 행함으로써 윤곽부분에서는 리플잡음을 초래하고 평면부분에서도 잡음증폭을 피할 수 없으며, 또한 시각적으로 효율적이지 못한 면이 있다. 이러한 문제점을 개선하기 위하여, 본 논문에서는 영상을 방향이 없는 평면영역과 4가지 방향을 갖는 윤곽영역으로 나누어, 윤곽방향을 고려한 방향성 정칙화 연산자를 사용하여 평면영역과 윤곽영역의 방향특성에 따라 적응적으로 처리하는 반복복원방법을 제안한다. 제안한 방법은 기존의 방법과 비교하여 평면영역에서의 잡음 평활화가 개선되고 시각적으로 중요한 윤곽부분의 리플잡음을 억제함으로써 윤곽부분 복원에 효율적임을 실험결과를 통해 알 수 있었으며 ISNR 변에서도 우수하였다.

  • PDF