• 제목/요약/키워드: Regression models

검색결과 3,638건 처리시간 0.029초

Partially linear support vector orthogonal quantile regression with measurement errors

  • Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.209-216
    • /
    • 2015
  • Quantile regression models with covariate measurement errors have received a great deal of attention in both the theoretical and the applied statistical literature. A lot of effort has been devoted to develop effective estimation methods for such quantile regression models. In this paper we propose the partially linear support vector orthogonal quantile regression model in the presence of covariate measurement errors. We also provide a generalized approximate cross-validation method for choosing the hyperparameters and the ratios of the error variances which affect the performance of the proposed model. The proposed model is evaluated through simulations.

자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정 (Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification)

  • 김영남
    • 대한상한금궤의학회지
    • /
    • 제14권1호
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

Support Vector Regression에 기반한 전력 수요 예측 (Electricity Demand Forecasting based on Support Vector Regression)

  • 이형로;신현정
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

다중회귀분석을 이용한 임하호 유입하천의 수온예측 (Water-Temperature Prediction of Streams Entering into Imha Reservoir using Multi-Regnssion Method)

  • 이용곤;이상욱;고덕구
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.919-925
    • /
    • 2006
  • The regression models for the water temperatures of Ban Byeon Stream and Yong Jeon stream were developed using multi-regression method. It was also investigated that the applicability of the stream temperature prediction to two-dimensional numerical simulation to predict the vertical water temperature in Imha Reservoir. Air temperature and dew point as independent variables were selected to be applicable to cases with the different variation of flow rates. The data division of water temperature using a cutoff flow rate of $20m^3/s$ was found to reduce the prediction error of the stream temperature. The mean absolute percent error of the numerical simulation results of the vertical water temperature in Imha Reservoir using the regression models was 11%, which was only 4.3% lager than the simulation result using the measured stream temperature. Therefore, the regression models of the stream temperatures using multi-regression method applied in this study could be applied to predict the vertical water temperature in Imha Reservoir with a good accuracy.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

3차원 박판형성 공정 유한요소해석용 드로우비드 모델 (Drawbead Model for 3-Dimensional Finite Element Analysis of Sheet Metal Forming Processess)

  • 금영탁;김준환;차지혜
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.394-404
    • /
    • 2002
  • The drawbead model for a three-dimensional a finite element analysis of sheet metal forming processes is developed. The mathematical models of the basic drawbeads like circular drawbead, stepped drawbead, and squared drawbaed are first derived using the bending theory, belt-pulley equation, and Coulomb friction law. Next, the experiments for finding the drawing characteristics of the drawbead are performed. Based on mathematical models and drawing test results, expert models of basic drawbeads are then developed employing a linear multiple regression method. For the expert models of combined drawbeads such as the double circular drawbead, double stepped drawbead, circular-and-stepped drawbead, etc., those of the basic drawbeads are summed. Finally, in order to verify the expert models developed, the drawing characteristics calculated by the expert models of the double circular drawbead and circular-and-stepped drawbead are compared with those obtained from the experiments. The predictions by expert models agree well with the measurements by experiments.

차로수별 간선도로구간 사고모형 - 청주시를 사례로 - (Traffic Accident Models of Arterial Road Sections by Number of Lane in the Case of Cheongju)

  • 임진강;나희;박병호
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.130-135
    • /
    • 2011
  • This study deals with the accident models of arterial road sections. The objectives is to develop the models by number of lane. In pursuing the above, this study gives particular emphasis to dividing the 474 small link sections, collecting the accident data of 2007, and applying the statistical programs of SPSS17.0 and NLOGIT4.0. The main results are as follows. First, the number of accidents of two-lane roads were analyzed to be 59.9% of totals and to be the most of all. Second, one Poisson and two negative binomial regression models which were all statistically significant were developed. Finally, the common variables of all models were evaluated to be ADT and number of exit/entry which were all positive to the accidents.

퍼지 규칙 기반 모델링 기법을 이용한 감성 만족도 모델 개발 (User Satisfaction Models Based on a Fuzzy Rule-Based Modeling Approach)

  • 박정철;한성호
    • 대한산업공학회지
    • /
    • 제28권3호
    • /
    • pp.331-343
    • /
    • 2002
  • This paper proposes a fuzzy rule-based model as a means to build usability models between emotional satisfaction and design variables of consumer products. Based on a subtractive clustering algorithm, this model obtains partially overlapping rules from existing data and builds multiple local models each of which has a form of a linear regression equation. The best subset procedure and cross validation technique are used to select appropriate input variables. The proposed technique was applied to the modeling of luxuriousness, balance, and attractiveness of office chairs. For comparison, regression models were built on the same data in two different ways; one using only potentially important variables selected by the design experts, and the other using all the design variables available. The results showed that the fuzzy rule-based model had a great benefit in terms of the number of variables included in the model. They also turned out to be adequate for predicting the usability of a new product. Better yet, the information on the product classes and their satisfaction levels can be obtained by interpreting the rules. The models, when combined with the information from the regression models, are expected to help the designers gain valuable insights in designing a new product.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.