• 제목/요약/키워드: Regression imputation

검색결과 69건 처리시간 0.018초

Estimation of Log-Odds Ratios for Incomplete $2{\times}2$ Tables with Covariates using FEFI

  • Kang, Shin-Soo;Bae, Je-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.185-194
    • /
    • 2007
  • The information of covariates are available to do fully efficient fractional imputation(FEFI). The new method, FEFI with logistic regression is proposed to construct complete contingency tables. Jackknife method is used to get a standard errors of log-odds ratio from the completed table by the new method. Simulation results, when covariates have more information about categorical variables, reveal that the new method provides more efficient estimates of log-odds ratio than either multiple imputation(MI) based on data augmentation or complete case analysis.

  • PDF

Support Vector Regression을 이용한 희소 데이터의 전처리 (A Sparse Data Preprocessing Using Support Vector Regression)

  • 전성해;박정은;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.499-501
    • /
    • 2004
  • 웹 로그, 바이오정보학 둥 여러 분야에서 다양한 형태의 결측치가 발생하여 학습 데이터를 희소하게 만든다. 결측치는 주로 전처리 과정에서 조건부 평균이나 나무 모형과 같은 기본적인 Imputation 방법을 이용하여 추정된 값에 의해 대체되기도 하고 일부는 제거되기도 한다. 특히, 결측치 비율이 매우 크게 되면 기존의 결측치 대체 방법의 정확도는 떨어진다. 또한 데이터의 결측치 비율이 증가할수록 사용 가능한 Imputation 방법들의 수는 극히 제한된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 Vapnik의 Support Vector Regression을 데이터 전처리 과정에 알맞게 변형한 Support Vector Regression을 제안하여 이러한 문제점들을 해결하였다. 제안 방법을 통하여 결측치의 비율이 상당히 큰 희소 데이터의 전처리도 가능하게 되었다. UCI machine learning repository로부터 얻어진 데이터를 이용하여 제안 방법의 성능을 확인하였다.

  • PDF

누락교통량자료 보정방법에서 강우의 영향 고려 (Considering of the Rainfall Effect in Missing Traffic Volume Data Imputation Method)

  • 김민현;오주삼
    • 한국ITS학회 논문지
    • /
    • 제14권2호
    • /
    • pp.1-13
    • /
    • 2015
  • 교통량자료는 매우 다양한 분야에서 사용되는 기초자료이다. 교통량자료는 도로교통량조사를 통하여 수집되며, 도로교통량조사 중 기계식 장비를 사용하여 365일 24시간 지속적으로 수집되는 자료를 상시교통량자료라고 한다. 상시교통량자료는 장비의 오작동 및 여러 원인으로 교통량자료누락이 발생하는 경우가 있다. 누락된 교통량자료는 여러 누락보정방법을 적용하여 보정을 수행하고 있다. 하지만, 기존의 누락보정방법론들은 기상에 대한 영향을 전혀 고려하지 않은 실정이다. 따라서 본 연구에서는 기상 중 강우의 영향을 고려한 누락교통량자료 보정방법에 대한 연구를 수행하였다. 이를 위해 우선 일반국도에서 수집한 교통량자료와 기상청의 기상자료의 매칭을 수행하였으며, 이후 일반국도의 특성별로 군집분석 수행 및 분석대상지점 선정을 진행하였다. 세 가지 보정 기법들(평균대체법/자기회귀모형/EM 기법)을 사용하여 전체 자료에서 누락보정을 수행하는 것과 강우일의 자료만을 가지고 누락보정을 수행하여 보정값의 정확도를 평가하였다. 분석 결과 모든 보정방법 및 분석지점에서 과거 강우일의 교통량자료만을 가지고 보정한 경우가 더 정확한 보정값을 산출하는 것으로 분석되었다.

다중대체와 재현자료 작성 (Multiple imputation and synthetic data)

  • 김정연;박민정
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.83-97
    • /
    • 2019
  • 사회가 발전함에 따라 이용자의 다양한 분석 요구에 대응하기 위해 개인 단위로 구성된 마이크로데이터 제공이 증가했다. 나아가 센서스, 행정자료와 같은 전수자료를 마이크로데이터 형태로 제공받아 연구하고자 하는 요구 역시 커지고 있다. 정책결정, 학술목적 등을 위한 마이크로데이터 분석은 가치 창출 측면에서 대단히 바람직하다. 하지만 자료 유용성이 확보된 마이크로데이터 제공은 개인정보가 노출될 가능성이라는 위험을 가질 수 밖에 없다. 이에, 자료의 유용성을 확보하면서 개인정보보호를 보장할 수 있는 여러 방법들이 고려되어 왔다. 이러한 방법 중 하나로 재현자료(synthetic data)를 생성해서 활용하는 방법이 연구되어 왔다. 본 논문은 재현자료 생성과 관련된 방법론 및 주의사항을 소개하여, 재현자료의 이해를 도모하고자 한다. 이를 위해 재현자료 작성에 필수적인 다중대체, 베이지안 예측 모형 및 베이지안 붓스트랩 등의 개념들을 먼저 설명하고, 완전 재현자료 및 부분 재현자료에 대해 살펴본다. 특히, 재현자료 작성을 심도 깊이 이해하기 위해 순차회귀 다중대체(sequential regression multivariate imputation)를 이용해 경시적(longitudinal) 자료를 재현자료로 작성하는 구체적 사례를 살펴본다.

비선형 모델을 이용한 결측 대체 방법 비교 (A comparison of imputation methods using nonlinear models)

  • 김혜인;송주원
    • 응용통계연구
    • /
    • 제32권4호
    • /
    • pp.543-559
    • /
    • 2019
  • 자료에는 다양한 원인에 의해 결측이 발생한다. 만약 결측치를 제외하고 완전히 관찰된 자료만으로 분석을 실시한다면 결측자료 메커니즘이 완전임의결측이 아닌 경우 결과에 편향이 발생하거나 제외된 개체로 인한 정보의 손실로 추정의 정밀도가 약화된다. 결측이 하나의 변수에서만 일어나지 않기 때문에, 자료에 변수가 많을 수록 이 문제는 심화된다. 문제를 개선하기 위해 결측치를 대체하는 여러가지 방법들이 제안되었다. 하지만 모수적인 모형을 이용한 대체 방법들은 가정에 위배되는 현실 데이터에는 적합하지 않다. 따라서 본 연구에서는 자료의 분포 가정에 덜 영향을 받는 커널, 리샘플링, 스플라인 방법을 활용한 비선형 대체 방법들을 리뷰하고 필요한 경우 기존의 비선형 대체 방법에 대체클래스를 사용하여 대체값의 정확도를 높이거나 랜덤성을 가지는 오차를 더해주어 추정치의 분산이 적게 추정되는 문제를 개선하는 확장된 결측 대체 방법을 제안한다. 본 연구에서 고려한 여러 가지 대체 방법들은 다양한 모의자료 설계 하에서 성능을 비교하였다. 모의실험 결과, 비선형 대체 방법들은 각 설계 하에 다른 성능을 보이며 전반적으로 커널 회귀나 스플라인을 활용한 대체 방법들이 좋은 성능을 보였다. 더불어, 확장된 대체 방법은 기존의 대체 방법이 가지는 문제점을 개선함을 확인할 수 있었다.

연속적 결측이 존재하는 기온 자료에 대한 결측복원 기법의 비교 (A comparison of imputation methods for the consecutive missing temperature data)

  • 김희경;강인경;이재원;이영섭
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.549-557
    • /
    • 2016
  • 장기간의 기후 자료가 누적되다 보면 자료의 수집과정에서 시스템적 오류나 측정 장비의 고장 등으로 인하여 연속적 결측이 종종 발생하게 된다. 연속적인 결측 형태를 갖는 경우 시계열 결측 자료를 대체하는 것에 어려움이 따른다. 이러한 경우 참조시계열을 이용하여 결측값을 대체할 수 있다. 참조시계열은 결측이 발생한 시계열과 관련성이 높은 주변지점의 시계열로 구성할 수 있다. 본 연구에서는 결측값을 대체시킬 수 있는 3가지 결측복원 기법-수정된 정규화비율 방법, 회귀 방법, IDW 방법-을 비교하는 시뮬레이션을 수행하였다. 우리나라 14개 지점의 기후관측소의 일평균기온값을 대상으로 비교한 결과 남쪽 해안가에 위치한 기후관측소의 자료에 대해서는 IDW 방법이 가장 정확한 것으로 나타났으며, 그 외 지역의 기후관측소 자료에 대해서는 회귀 방법이 가장 정확한 것으로 나타났다.

K-nn을 이용한 Hot Deck 기반의 결측치 대체 (Imputation of Missing Data Based on Hot Deck Method Using K-nn)

  • 권순창
    • 한국IT서비스학회지
    • /
    • 제13권4호
    • /
    • pp.359-375
    • /
    • 2014
  • Researchers cannot avoid missing data in collecting data, because some respondents arbitrarily or non-arbitrarily do not answer questions in studies and experiments. Missing data not only increase and distort standard deviations, but also impair the convenience of estimating parameters and the reliability of research results. Despite widespread use of hot deck, researchers have not been interested in it, since it handles missing data in ambiguous ways. Hot deck can be complemented using K-nn, a method of machine learning, which can organize donor groups closest to properties of missing data. Interested in the role of k-nn, this study was conducted to impute missing data based on the hot deck method using k-nn. After setting up imputation of missing data based on hot deck using k-nn as a study objective, deletion of listwise, mean, mode, linear regression, and svm imputation were compared and verified regarding nominal and ratio data types and then, data closest to original values were obtained reasonably. Simulations using different neighboring numbers and the distance measuring method were carried out and better performance of k-nn was accomplished. In this study, imputation of hot deck was re-discovered which has failed to attract the attention of researchers. As a result, this study shall be able to help select non-parametric methods which are less likely to be affected by the structure of missing data and its causes.

이상점 영향력 축소를 통한 무응답 대체법 (A Multiple Imputation for Reducing Outlier Effect)

  • 김만겸;신기일
    • 응용통계연구
    • /
    • 제27권7호
    • /
    • pp.1229-1241
    • /
    • 2014
  • 이상점과 무응답이 동시에 존재하는 경우에는 무응답만 있는 경우에 비해 무응답 대체의 성능이 떨어지게 된다. 이러한 경우에는 먼저 이상점을 탐지하고, 탐지된 이상점의 영향력을 축소한 후 무응답 대체를 실시하여야 한다. 본 논문에서는 이상점의 영향력을 축소하여 무응답 대체법의 성능을 향상시키는 방법을 연구하였다. 이를 위해 She and Owen (2011)이 제안한 이상점 탐지법을 살펴보았고, 탐지된 이상점의 영향력을 줄이기 위한 방법으로 흔히 사용되는 가중치 조정법과 이상점 대체법을 살펴보았다. 또한 이상점 처리 방법을 적용한 무응답 대체법을 살펴보았으며 모의실험과 사례분석을 통하여 이상점 영향력 축소 효과를 살펴보았다.

Effect of zero imputation methods for log-transformation of independent variables in logistic regression

  • Seo Young Park
    • Communications for Statistical Applications and Methods
    • /
    • 제31권4호
    • /
    • pp.409-425
    • /
    • 2024
  • Logistic regression models are commonly used to explain binary health outcome variable using independent variables such as patient characteristics in medical science and public health research. Although there is no distributional assumption required for independent variables in logistic regression, variables with severely right-skewed distribution such as lab values are often log-transformed to achieve symmetry or approximate normality. However, lab values often have zeros due to limit of detection which makes it impossible to apply log-transformation. Therefore, preprocessing to handle zeros in the observation before log-transformation is necessary. In this study, five methods that remove zeros (shift by 1, shift by half of the smallest nonzero, shift by square root of the smallest nonzero, replace zeros with half of the smallest nonzero, replace zeros with the square root of the smallest nonzero) are investigated in logistic regression setting. To evaluate performances of these methods, we performed a simulation study based on randomly generated data from log-normal distribution and logistic regression model. Shift by 1 method has the worst performance, and overall shift by half of the smallest nonzero method, replace zeros with half of the smallest nonzero method, and replace zeros with the square root of the smallest nonzero method showed comparable and stable performances.

A Comparative Study of Microarray Data with Survival Times Based on Several Missing Mechanism

  • Kim Jee-Yun;Hwang Jin-Soo;Kim Seong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.101-111
    • /
    • 2006
  • One of the most widely used method of handling missingness in microarray data is the kNN(k Nearest Neighborhood) method. Recently Li and Gui (2004) suggested, so called PCR(Partial Cox Regression) method which deals with censored survival times and microarray data efficiently via kNN imputation method. In this article, we try to show that the way to treat missingness eventually affects the further statistical analysis.