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Estimation of Log—0Odds Ratios for Incomplete
2X2 Tables with Covariates using FEFI

Shin-Soo Kangl) - Je-Min Bae2)

Abstract

The information of covariates are available to do fully efficient
fractional imputation(FEFI). The new method, FEFI with logistic
regression 1s  proposed to construct complete contingency tables.
Jackknife method is used to get a standard errors of log—odds ratio from
the completed table by the new method. Simulation results, when
covariates have more information about categorical variables, reveal that
the new method provides more efficient estimates of log—-odds ratio than
either multiple imputation(MI) based on data augmentation or complete
case analysis.

Keywords : Complete Case Analysis, Fractional Imputation, Multiple
Imputation, Wald Statistic

1. Introduction

In the analysis of 2X2 contingency tables, it may happen that one of the binary
responses is not observed for some respondents, but there is covariate information
that can be used to impute the missing responses. Although using imputation in
the analysis of missing data has been studied for a long time, the analysis of
incomplete contingency tables with covariates has not received sufficient attention.
One simple approach, known as complete-case(CC) analysis, discards the missing
data ignoring covariates information. An alternative approach involves
constructing a complete table, in which all cases are completed classified, by
imputing information for the missing row or column classification.  Multiple
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imputation, proposed by Rubin (1978), provides a way analyzing completely
classified tables.
The incomplete data with one binary response variable and covariates has been
studied widely. Fitzmaurice et al. (1994) described a likelihood-based method to
estimate logistic regression coefficients for incomplete binary response and
proposed a consistent estimator of the asymptotic variance-covariance matrix of
the estimators using only the first derivatives of log-likelihood function. When
the data has a binary outcome variable with incompletely observed categorical
covariates, Vach and Schumacher (1993) estimated logistic regression coefficients
using likelihood based approach.
Let X, X, be two categorical variables and Z=(Z,%,-,%,) be a set of
covariates. Let m;; be the cell probability in i row and jth column in two way
1129 )
oMoy "
We restrict that the missingness is confined to two categorical variables. A fully
efficient fractional imputation(FEFI) method with logistic regression is proposed to
impute missing values on X;, X,. The log—odds ratio and cell probability, =; are

contingency table of (X;, X,) and 6 be log-odds ratio, log(

estimated and their variance estimates are studied.

2. FEFI with Logistic Regression

There are three kinds of missing units with missing on X; missing on X, , and
missing on both variables. Let z= (zl,z% ---,zp)represent observed values for the
covariates. Given the  observed X,=v and z, let B oz be

PX, =ulX,=v,2, =2 2,= Zo, Ly = zp) for the units missing on X, Dz be

PX,=vX, =u,2, =2 Z, =z, -, Z,=z,) for the units missing on X,, and ol 2
beP(X, =u. X, =vlZ, = 2, Z, = 2,, L, = zp) for both missing units, where
w,v = 10,1,

We can fit the following logistic regression model through complete cases to

estimate w

uw\gy
logit(@yy,) = By +a+ B, + By, ot B,

exp(,@AO+ ot B:#,B;f ok 6; )
L+exp(Gytat G, +0, ++5,)

1
1+ exp(By ot B+, + -t B;p)

then @ lz= and @, lz=

The logistic regression model is set up in a same manner to estimate ¢, for
the units missing on X,.
Let's define three binary response variables,
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v :{1 if X;=1landX,=1
! 0 otherwise,

v — {1 itX;=1landX, =1
2 0 otherwise,

{1 if X,=1andX, =1
3

0 otherwise,
to set up logistic regression models for estimating of ¢,,, , Let ; be
K; = logy (Pr(Y; = 1/2))

in the logistic regression model, where ¢=1,2,3. After fitting three logistic
regression models, we will get

o exp(k)

Prilz 1 _|_exp(la)+exp(k;)+exp(k;) s
N exp(k,)

('P]2|£7 1+pr(k/'\l)+(‘xp(k;;)+cxp(l;3) 9
. exp(ky)

P2112= A ;. )

1+ exp(ky) + exp(k,) + exp(ks)

. 1

Pool,—

1+ exp(k’:) + eXp(k‘Ag) + eXP(kAs) ‘

The estimates of @y, @y, and @, are used as  weights in the FEFI

procedure. Table 1 shows an example given the estimated values of weights and
the 2 X2 contingency table is made from Table 1 as shown in Table 2.
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<Table 1> Example of FEFI

Observed FEFI

obs. |X, Xy 1X X, |Weights

1 1 1 1 1 1

2 1 0 1 0 1

3 0 1 0 1 1

4 0 0 0 0 1

5 ? 11 1 |%ilz
O 1 ZUOHﬁ

6 |0 2 o 1 |,
0 0 q}oolﬁ

7 ? ? 1 1 [Pl
1 0 10z,
0 1 |Poile,
0 0 |%oolz,

<Table 2> TFEFI cell counts for (X;,X,) from Tablel

(1,1) (LO) 0,1 0,0

L+ @y, T e, L+oy, 1+w01|§+¢01‘ﬁ+¢01‘2_7 1+¢00|@+Poolﬁ

3. Variance Estimation

Most discussions of imputation methods and the EM algorithm concern point
estimation of population quantities with missing values. A second concern is how
to get standard errors of the point estimates obtained from the filled-in data by
imputation methods and EM algorithm.

The resampling method is one of general approaches to account for the additional
uncertainty due to nonresponse. Apply the imputation and analysis procedure
repeatedly to resampled versions of the incomplete data. Two major resampling
methods are the bootstrap and the jackknife. These methods are often easy to
implement and have broad applicability, but they rely on large samples and are
computationally intensive. Jackknife method is examined in this section, which is
widely used in survey sampling applications.

Another approach is multiple imputation. We can create multiply imputed data
sets that allow the additional uncertainty from imputation to be assessed. Multiple
imputation(MI) was first proposed by Rubin(1978). Replacing ecach missing value
by a vector of D> 2 imputed values. We impute several values for each missing
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value instead of just one for the MI. D completed data sets can be created from
the vectors of imputations: For example, the first set of imputed values are used
to form the first completed data set. D sets of imputations are repeated random
draws from the predictive distribution of the missing values. Standard
complete-data methods are used to analyze each data set and D complete-data
inferences can be combined to form one inference that properly reflects uncertainty
due to nonresponse.

3.1 Jackknife Variance Estimation

The simple Jackknife for complete data is reviewed as follows. Let 0 be
consistent estimate of log-odds ratio, # based on a sample S of independent

observations and S'\?) be Jackknife sample of size n-1 obtained by dropping the
jm observation from the original sample S. Let 9( N9 be the estimate of © based
on S and let (é( \‘1),-

times. 0, is the jackknife estimator of 6, 0, is

--,é(\\n)) be the set of estimates obtained by repeating n

0.0=0+n—1)60-10), (1)

jac

. 1 n N ~ . ~ ~ .
where 6= EZH( M) Now V4, the variance of 6 or 60, is
j=1

TA/- = n—1 i(é(\jJ*E)Q- (2)

Suppose some observations of the original sample S are incomplete on cat-
egorical variables. We can impute the missing data by the FEFI procedure
with logistic regression in section 2. It is explained how to apply jackknife
procedure to get the variance of the point estimation from the imputed data
by FEFI methods. We repeat the following 1-3 steps n times to get the set
of estimates(®",--,000 "))

e Stepl: Delete the j‘h observation from S with incomplete some obser—
vations, yielding the sample . .S (9,

e Step2: Fill in the missing data in $ (\J) by applying FEFI procedures
introduced in section 2, yielding § N

e Step3: Compute 0N on ~ sV ), which is the imputed jackknife sample.

Now we can use equations (2) for a consistent estimates of the variances of
6 For this Jackknife variance estimator, we need n times FEFI procedures.
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3.2 MI Variance Estimation

It is reviewed how to combine D complete data inferences to get an estimate of
0, 9;1 and an estimate of the variance of éM] , v (9;11) Each data set completed
by imputation is analyzed using the same complete-data method. Let é(] be the
complete-data estimate of 6 based on the d'" imputed data, where d=1,---,D

The multiple imputation estimator of 6, éM] is the average of D estimates of ©

from D imputed data sets.

~ 1 f} "
0 - 6 d- (3)
M 2
9;11 provides a valid estimate of u and increases the efficiency of estimate over a
single imputation estimator based on the stochastic regression imputation method.

~ o~

Let W, V{0, be the estimate of the variance of éd based on the d” imputed

data. Now TA/(HAM[) has two components as follows:

e . . — 1 & — .
1. The average within—imputation variance: W= ) W, and W, is the
d=1
estimated total variance when there is no missing value.
. . ] 1 A~~~
2. The between—-imputation componen: B, = DT M (0,6,
d=1

The total variability associated with ] w7 1S

o~ — D+1

V) =Tp= Wpt D*Bpa (4)

1. . . ..
1s an adjustment for finite D.

where D

4. Simulation Results
4.1 Simulation Design

There are four random variables, X,,X,,7,,%,, where X,,X, denote two
categorical response variables that have O or 1 binary values and Z;,%, have
bivariate normal distribution with mean vector p;d=1,2,3,4 and variance-

1 0.5

ianc ix XY=
covariance matrix 0.5 1

). Let p; be a conditional mean vector given
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X1=1, X =1, py be for X; =1, Xy =0, pg be for X; =0, Xy =1 and y, be for
X, =0, X,=0.

The random numbers of (X;,X,) are generated from the multinomial distribution
11712
with 7= (71,9, Moy, M99 ) = (0.3,0.2,0.2,0.3). The true log-odds ratio, 10g(7r127r21 ,
1s 0.8109.

Three types of data sets are generated to differ the association, R2, between
(X,.X,) and (Z,,7Z,)varying p, in Table 3. 1000 data sets are generated per each

type. R? was empirically computed by the following formula (5) from the
generated data sets;

- ‘SXX_ SXZSEZISZX'|

R?’=1
SXX

, )

where S is the sample variance—covariance matrix of X, X, Z,, Z, such as
Syy S
g— ( XX XZ)'

SZX SZZ

<Table 3> Four types of data sets

’ 14 14 14

Type H Ho H3 o R?
1 (10,11) (10,11) (10,11) (10,11) 1.00

2 (1011 | (A1,12) | (A1,12) | (12,13) 0.31
3 o011 | d1,12) | (2,13) | (13,14 0.93

The generated sample size per each data set is 200 and the missing prob-
ability of X1 and X2 are 0.2 under missing completely at random(MCAR)

missing mechanism.
4.2 Simulation Results

The new method, which is fully effcient fractional imputation(FEFI) with iogistic
regression, is compared with multiple impoutation(MI), complete caseanalysis(CC)
and standard analysis for fully observed data set(Full). The values are averages of
1000 iog—odds point estimates and the values in parenthesis are standard
deviations of 1000 log—odds estimates in Table 4. Table 4 shows that the new
method and CC have similar performsnces which are close to the results of fully
observed data set and the newmethod tends to have less standard deviations when

R? is increased than CC.
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Multiple imputed data sets for the categorical variables are generated by data
augmentation with dirichlet flattening prior, ¢=1.05 using ’‘emCgm’ function in
S_Plus(2001). MI seems to give bias estimates of log-odds ratio. This bias may
be reduced little bit as choosing another prior.

<Table 4> Point estimation of log—odds ratio

Type(R?) 1(0.00) 2(0.31) 3(0.53)
0.833 0.824 0.825
New
(0.3740) (0.3592) (0.3324)
MI 0.752 0.766 0777
(0.3443) (0.3381) (0.3186)
0.833 0.826 0.823
CC
(0.3733) (0.3774) (0.3644)
0.835 0.818 0.821
Full
(0.2921) (0.2961) (0.2901)

The values are averages of 1000 standard errors of log-odds ratio and the values
in parenthesis are standard deviations of 1000 standard errors of log-odds in
Table 5. The values in Table 5 shows that the new method with jackknife and
CC have less biased estimates of standard errors than MI The values in

—

parenthesis in Table 4 are close to the values in Table 5. The new method with

jackknife is more efficent to estimate standard errors than CC when R? is getting
increased. MI has the biggest standard deviations of 1000 standard errors of
log—odds ratio.

<Table 5> Estimation of S.E(log-odds ratio)

Type(R?) 1(0.00) 2(0.31) 3(0.53)
New with 0.3742 0.3568 0.3431
Jackknife (0.0147) (0.0139) (0.0120)
MI 0.3639 0.3499 0.3357
(0.0326) (0.0279) (0.0223)

CC 0.3661 0.3662 0.3662
(0.0133) (0.0138) (0.0125)

Full 0.2913 0.2911 0.2912
(0.0050) (0.0050) (0.0048)
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5. Conclusion

The values in Table 6 and Table 7 show that All three methods provide
essentially unbiased estimates for the cell probabilities and their standard errors.
The standard errors of the estimates differ across methods. Complete case analysis
provides the estimate of 7;; with the largest variance. the new method, FEFI with
jackknife tends to provide smaller standard errors of cell proportion than MI in
most cases.

<Table 6> Point estimation of

Type(R?) 1(0.00) 2(0.31) 3(053)

New 0.3019 0.2996 0.3004
(0.03680) (0.03748) (0.03515)

MI 0.2970 0.2960 0.2974
(0.03611) (0.03684) (0.03428)

cC 0.3022 0.2993 0.3003
(0.04016) (0.04163) (0.04141)

Full 0.3026 0.2993 0.2998
(0.03162) (0.03368) (0.03206)

We can conclude that the new method has always the best performances to
estimate the cell probabilities. Although the imputation methods improve the

<Table 7> Estimation of S.E(m;)

Type(R?) 1(0.00) 2(0.31) 3(0.53)

New with 0.0374 0.0363 0.0355
Jackknife (0.00138) (0.00142) (0.00132)

MI 0.0368 0.0359 0.0352
(0.00239) (0.00216) (0.00182)

cC 0.0405 0.0403 0.0404
(0.00189) (0.00200) (0.00196)

Full 0.0324 0.0323 0.0323
(0.00097) (0.00105) (0.00100)

estimation of individual cell probabilities relative to complete—case analysis, it is
not always true when we consider a measure of association between the two
variables like log-odds ratio. When the covariates have less information about the
categorical variables, the imputation methods, the new method and MI can not
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provide more information on association between two categorical variables. In this
case, the complete case analysis is good enough to estimate log-odds ratio. If the
correlation between categorical variables and covariates is higher, the new method
provides the better estimates of log—odds ratio.
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