• Title/Summary/Keyword: Regression estimator

Search Result 313, Processing Time 0.023 seconds

Robust Interpolation Method for Adapting to Sparse Design in Nonparametric Regression (선형보간법에 의한 자료 희소성 해결방안의 문제와 대안)

  • Park, Dong-Ryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.561-571
    • /
    • 2007
  • Local linear regression estimator is the most widely used nonparametric regression estimator which has a number of advantages over the traditional kernel estimators. It is well known that local linear estimator can produce erratic result in sparse regions in the realization of the design and the interpolation method of Hall and Turlach (1997) is the very efficient way to resolve this problem. However, it has been never pointed out that Hall and Turlach's interpolation method is very sensitive to outliers. In this paper, we propose the robust version of the interpolation method for adapting to sparse design. The finite sample properties of the method is compared with Hall and Turlach's method by the simulation study.

Asymptotic Properties of the Disturbance Variance Estimator in a Spatial Panel Data Regression Model with a Measurement Error Component

  • Lee, Jae-Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.349-356
    • /
    • 2010
  • The ordinary least squares based estimator of the disturbance variance in a regression model for spatial panel data is shown to be asymptotically unbiased and weakly consistent in the context of SAR(1), SMA(1) and SARMA(1,1)-disturbances when there is measurement error in the regressor matrix.

Kernel Regression Estimation for Permutation Fixed Design Additive Models

  • Baek, Jangsun;Wehrly, Thomas E.
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.499-514
    • /
    • 1996
  • Consider an additive regression model of Y on X = (X$_1$,X$_2$,. . .,$X_p$), Y = $sum_{j=1}^pf_j(X_j) + $\varepsilon$$, where $f_j$s are smooth functions to be estimated and $\varepsilon$ is a random error. If $X_j$s are fixed design points, we call it the fixed design additive model. Since the response variable Y is observed at fixed p-dimensional design points, the behavior of the nonparametric regression estimator depends on the design. We propose a fixed design called permutation fixed design, and fit the regression function by the kernel method. The estimator in the permutation fixed design achieves the univariate optimal rate of convergence in mean squared error for any p $\geq$ 2.

  • PDF

Estimation of the Polynomial Errors-in-variables Model with Decreasing Error Variances

  • Moon, Myung-Sang;R. F. Gunst
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.115-134
    • /
    • 1994
  • Polynomial errors-in-variables model with one predictor variable and one response variable is defined and an estimator of model is derived following the Booth's linear model estimation procedure. Since polynomial model is nonlinear function of the unknown regression coefficients and error-free predictors, it is nonlinear model in errors-in-variables model. As a result of applying linear model estimation method to nonlinear model, some additional assumptions are necessary. Hence, an estimator is derived under the assumption that the error variances are decrasing as sample size increases. Asymptotic propoerties of the derived estimator are provided. A simulation study is presented to compare the small sample properties of the derived estimator with those of OLS estimator.

  • PDF

A Robust Wald-Ttype Test in Linear Regression

  • Nam, Ho-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.507-520
    • /
    • 1997
  • In this paper we propose a robust Wald-type test which is based on an efficient Mallows-type one-step GM-estimator. The proposed estimator based on the weight function of Song, Park and Nam (1996) has a bounded influence function and a high breakdown point. Under some regularity conditions, we compute the finite-sample breakdown point, and drive asymptotic normality of the proposed estimator. The level and power breakdown points, influence function and asymptotic distribution of the proposed test statistic are main points of this paper. To compare the performance of the proposed test with other tests, we perform some Monte Carlo simulations.

  • PDF

SOME PROPERTIES OF SIMEX ESTIMATOR IN PARTIALLY LINEAR MEASUREMENT ERROR MODEL

  • Meeseon Jeong;Kim, Choongrak
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.85-92
    • /
    • 2003
  • We consider the partially linear model E(Y) : X$^{t}$ $\beta$+η(Z) when the X's are measured with additive error. The semiparametric likelihood estimation ignoring the measurement error gives inconsistent estimator for both $\beta$ and η(.). In this paper we suggest the SIMEX estimator for f to correct the bias induced by measurement error, and explore its properties. We show that the rational linear extrapolant is proper in extrapolation step in the sense that the SIMEX method under this extrapolant gives consistent estimator It is also shown that the SIMEX estimator is asymptotically equivalent to the semiparametric version of the usual parametric correction for attenuation suggested by Liang et al. (1999) A simulation study is given to compare two variance estimating methods for SIMEX estimator.

Generalized Bayes estimation for a SAR model with linear restrictions binding the coefficients

  • Chaturvedi, Anoop;Mishra, Sandeep
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics literature because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian analysis of these models, one may face the problem of lack of robustness with respect to underlying prior assumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as restricted Stein rule estimators.

A Semiparametric Estimation of the Contingent Valuation Model (조건부가치평가모형의 준모수 추정)

  • Park, Joo Heon
    • Environmental and Resource Economics Review
    • /
    • v.12 no.4
    • /
    • pp.545-557
    • /
    • 2003
  • A new semiparametric estimator of a dichotomous choice contingent valuation model is proposed by adapting the well-known density weighted average derivative of the regression function. A small sample behavior of the estimator is demonstrated very briefly by a simulation and the estimator is applied to estimate the WTP for preserving the Dong River area in Korea.

  • PDF

The Doubly Regularized Quantile Regression

  • Choi, Ho-Sik;Kim, Yong-Dai
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.753-764
    • /
    • 2008
  • The $L_1$ regularized estimator in quantile problems conduct parameter estimation and model selection simultaneously and have been shown to enjoy nice performance. However, $L_1$ regularized estimator has a drawback: when there are several highly correlated variables, it tends to pick only a few of them. To make up for it, the proposed method adopts doubly regularized framework with the mixture of $L_1$ and $L_2$ norms. As a result, the proposed method can select significant variables and encourage the highly correlated variables to be selected together. One of the most appealing features of the new algorithm is to construct the entire solution path of doubly regularized quantile estimator. From simulations and real data analysis, we investigate its performance.

A Generalized M-Estimator in Linear Regression

  • Song, Moon-Sup;Park, Chang-Soon;Nam, Ho-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1994
  • We propose a robust regression estimator which has both a high breakdown point and a bounded influence function. The main contribution of this article is to present a weight function in the generalized M (GM)-estimator. The weighting schemes which control leverage points only without considering residuals cannot be efficient, since control leverage points only without considering residuals cannot be efficient, since these schemes inevitably downweight some good leverage points. In this paper we propose a weight function which depends both on design points and residuals, so as not to downweight good leverage points. Some motivating illustrations are also given.

  • PDF