• Title/Summary/Keyword: Regression Study

Search Result 28,750, Processing Time 0.051 seconds

Regression Quantiles Under Censoring and Truncation

  • Park, Jin-Ho;Kim, Jin-Mi
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.807-818
    • /
    • 2005
  • In this paper we propose an estimation method for regression quantiles with left-truncated and right-censored data. The estimation procedure is based on the weight determined by the Kaplan-Meier estimate of the distribution of the response. We show how the proposed regression quantile estimators perform through analyses of Stanford heart transplant data and AIDS incubation data. We also investigate the effect of censoring on regression quantiles through simulation study.

Estimation of Jump Points in Nonparametric Regression

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.899-908
    • /
    • 2008
  • If the regression function has jump points, nonparametric estimation method based on local smoothing is not statistically consistent. Therefore, when we estimate regression function, it is quite important to know whether it is reasonable to assume that regression function is continuous. If the regression function appears to have jump points, then we should estimate first the location of jump points. In this paper, we propose a procedure which can do both the testing hypothesis of discontinuity of regression function and the estimation of the number and the location of jump points simultaneously. The performance of the proposed method is evaluated through a simulation study. We also apply the procedure to real data sets as examples.

A Study on the Selection of Test Scope and the Prioritization of Test Case Based on Modification Method for Regression Testing (변경 메서드 기반의 회귀 테스트 검증 범위 선택 및 검증 항목 우선순위 선정에 관한 연구)

  • Jung, Woo-Jin;Rah, Sang-Rin;Choi, Yong-Lak
    • Journal of Information Technology Services
    • /
    • v.14 no.2
    • /
    • pp.129-142
    • /
    • 2015
  • The purpose of this study is to suggest an effective regression testing method in order to minimize the scope of test resulting from the modification of software and to prevent mismatch of test case and test objects. As a way to improve the efficiency of regression testing which uses a change-centric testing technique, the method flow is analyzed and grasped through a static analysis based on source code in order to identify modified parts. After the order of priority is set according to the results of user action log-based dynamic analysis on identified regression testing objects, test effect can be raised by adjusting the order of priority using code complexity. Quality assurance coverage can be checked using the user action log suggested in this study, and the progress of test and whether or not each function has been verified can be checked, too. In addition, by minimizing test parts and adjusting the order of test, costs and time can be saved, making it possible to conduct regression testing effectively.

Estimation of Pollutant Loads Delivery Ratio by Flow Duration Using Regression Equation in Hwangryong A Watershed (회귀식을 이용한 황룡A 유역에서의 유황별 유달율 산정)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Joo, Seuk-Hun;Choi, Woo-Young;Lee, Yong-Woon;Rhew, Doug-Hee;Lee, Su-Woong;Chang, Nam-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.25-31
    • /
    • 2009
  • In this study, pollutant loads delivery ratio by flow duration in Hwangryoung A watershed was estimated. The delivery ratio was estimated with measured data by Ministry of Environment(MOE) and the regression equation based on geomorphic parameters. Eight day interval flow data measured by the MOE were converted to daily flow to calculate daily load and flow duration curve by correlating data of neighboring station which has daily flow data. Regression equation developed by previous study was tested to study watershed and found to be satisfactory. The delivery ratios estimated by two methods were compared. For the case of Biochemical oxygen demand(BOD), the delivery ratios of low flow condition were 7.6 and 15.5% by measured and regression equation, respectively. Also, the delivery ratios of Total phosphorus(T-P) for normal flow condition were 13.3 and 6.3% by measured and regression equation, respectively.

Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

  • Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.327-341
    • /
    • 2022
  • Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

A Study on Factors Affecting the Use of Ambulatory Physician Services (의사방문수 결정요인 분석)

  • 박현애;송건용
    • Health Policy and Management
    • /
    • v.4 no.2
    • /
    • pp.58-76
    • /
    • 1994
  • In order to study factors affecting the use of the ambulatory physician services. Andersen's model for health utilization was modified by adding the health behavior component and examined with three different approaches. Three different approaches were the multiople regression model, logistic regression model, and LISREL model. For multiple regression, dependent variable was reported illness-related visits to a physician during past one year and independent variables are variaous variables measuring predisposing factor, enabling factor, need factor and health behavior. For the logistic regression, dependent variable was visit or no-visit to a physician during past one year and independent variables were same as the multiple regression analysis. For the LISREL, five endogenous variables of health utiliztion, predisposing factor, enabling factor, need factor, and health behavior and 20 exogeneous variables which measures five endogenous variables were used. According to the multiple regression analysis, chronic illness, health status, perceived health status of the need factor; residence, sex, age, marital status, education of the predisposing factor ; health insurance, usual source for medical care of enabling factor were the siginificant exploratory variables for the health utilization. Out of the logistic regression analysis, health status, chronic illness, residence, marital status, education, drinking, use of health aid were found to be significant exploratory variables. From LISREL, need factor affect utilization most following by predisposing factor, enabling factor and health behavior. For LISREL model, age, education, and residence for predisposing factor; health status, chronic illess, and perceived health status for need factor; medical insurance for enabling factor; and doing any kind of health behavior for the health behavior were found as the significant observed variables for each theoretical variables.

  • PDF

A Study on the Influence of a Sewage Treatment Plant's Operational Parameters using the Multiple Regression Analysis Model

  • Lee, Seung-Pil;Min, Sang-Yun;Kim, Jin-Sik;Park, Jong-Un;Kim, Man-Soo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • In this study, the influence of the control and operational parameters within a sewage treatment plant were reviewed by performing multiple regression analysis on the effluent quality of the sewage treatment. The data used for this review are based on the actual data from a sewage treatment plant using the media process within the year 2012. The prediction models of chemical oxygen demand ($COD_{Mn}$) and total nitrogen (T-N) within the effluent of the 2nd settling tank based on the multiple regression analysis yielded the prediction accuracy measurements of 0.93 and 0.84, respectively; and it was concluded that the model was accurately predicting the variances of the actual observed values. If the data on the energy spent on each operating condition can be collected, then the operating parameter that conserves energy without violating the effluent quality standards of COD and T-N can be determined using the regression model and the standardized regression coefficients. These results can provide appropriate operation guidelines to conserve energy to the operators at sewage treatment plants that consume a lot of energy.

A Comparative Study on Arrhenius-Type Constitutive Models with Regression Methods

  • Lee, Kyunghoon;Murugesan, Mohanraj;Lee, Seung-Min;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2017
  • A comparative study was performed on strain-compensated Arrhenius-type constitutive models established with two regression methods: polynomial regression and regression Kriging. For measurements at high temperatures, experimental data of 70Cr3Mo steel were adopted from previous research. An Arrhenius-type constitutive model necessitates strain compensation for material constants to account for strain effect. To associate the material constants with strain, we first evaluated them at a set of discrete strains, then capitalized on surrogate modeling to represent the material constants as a function of strain. As a result, disparate flow stress models were formed via the two different regression methods. The constructed constitutive models were examined systematically against measured flow stresses by validation methods. The predicted material constants were found to be quite accurate compared to the actual material constants. However, notable mismatches between measured and predicted flow stresses were revealed by the proposed validation techniques, which carry out validation with not the entire, but a single tensile test case.

Correlation Analysis of Water Quality According to Land Use Types of Reservoir Watershed (유역 토지이용과 저수지 수질의 상관관계 분석)

  • Youn, Dong-Koun;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.614-619
    • /
    • 2005
  • The object of this study was to presented regression equations for obtaining simply and quickly values of water quality items, BOD, COD, T-N, and T-P. Regression equations obtained to analyze relationships for water quality items to land use types in agricultural reservoir watersheds. In order to derive regression equations, a multiple linear regression analysis was used in this studying reservoirs. In this regression analysis, a independent values used land used types and dependent values used BOD, COD, T-N, T-P values in water quality items. The results showed that numbers of regression equation ranging above 0.90 in a multiple correlation coefficient (MCC) was not found, ranging from 0.70 to 0.90 in the MCC was 6, ranging from 0.40 to 0.70 in the MCC was 20, and ranging from 0.20 to 0.40 in the MCC was 4. The results of this study can be used as a basic information for evaluating simply and quickly water quality for proposing and designing steps in water quality policy.

  • PDF

ALC(Autoclaved Lightweight Concrete) Hardness Prediction by Multiple Regression Analysis (다중회귀분석을 이용한 ALC 경도예측에 관한 연구)

  • Kim, Kwang-Soo;Baek, Seung-Hoon;Chung, Soon-Suk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 2012
  • In the ALC(Autoclaved lightweight concrete) manufacturing process, if the pre-cured semi-cake is removed after proper time is passed, it will be hard to retain the moisture and be easily cracked. Therefore, in this research, we took the research by multiple regression analysis to find relationship between variables for the prediction the hardness that is the control standard of the removal time. We study the relationship between Independent variables such as the V/T(Vibration Time), V/T movement, expansion height, curing time, placing temperature, Rising and C/S ratio and the Dependent variables, the hardness by multiple regression analysis. In this study, first, we calculated regression equation by the regression analysis, then we tried phased regression analysis, best subset regression analysis and residual analysis. At last, we could verify curing time, placing temperature, Rising and C/S ratio influence to the hardness by the estimated regression equation.

  • PDF