• Title/Summary/Keyword: Regression Study

Search Result 28,750, Processing Time 0.047 seconds

COMPARISON OF VARIABLE SELECTION AND STRUCTURAL SPECIFICATION BETWEEN REGRESSION AND NEURAL NETWORK MODELS FOR HOUSEHOLD VEHICULAR TRIP FORECASTING

  • Yi, Jun-Sub
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.599-609
    • /
    • 1999
  • Neural networks are explored as an alternative to a regres-sion model for prediction of the number of daily household vehicular trips. This study focuses on contrasting a neural network model with a regression model in term of variable selection as well as the appli-cation of these models for prediction of extreme observations, The differences in the models regarding data transformation variable selec-tion and multicollinearity are considered. The results indicate that the neural network model is a viable alternative to the regression model for addressing both messy data problems and limitation in variable structure specification.

Spontaneous Regression of a Large Lumbar Disc Extrusion

  • Ryu, Sung-Joo;Kim, In-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.3
    • /
    • pp.285-287
    • /
    • 2010
  • Although the spontaneous disappearance or decrease in size of a herniated disc is well known, that of a large extruded disc has rarely been reported. This paper reports a case of a spontaneous regression of a large lumbar disc extrusion. The disc regressed spontaneously with clinical improvement and was documented on a follow up MRI study 6 months later. The literature is reviewed and the possible mechanisms of spontaneous disc regression are discussed.

VARIANCE ESTIMATION OF ERROR IN THE REGRESSION MODEL AT A POINT

  • Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.501-508
    • /
    • 2003
  • Although the estimate of regression function is important, some have focused the variance estimation of error term in regression model. Different variance estimators perform well under different conditions. In many practical situations, it is rather hard to assess which conditions are approximately satisfied so as to identify the best variance estimator for the given data. In this article, we suggest SHM estimator compared to LS estimator, which is common estimator using in parametric multiple regression analysis. Moreover, a combined estimator of variance, VEM, is suggested. In the simulation study it is shown that VEM performs well in practice.

Study on Application of Reverse Engineering of Impeller using Polynomial Regression (다항식회귀분석을 통한 임펠러의 역공학 적용에 관한 연구)

  • 윤상환;황종대;정윤교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1776-1779
    • /
    • 2003
  • This research presents Reverse Engineering of a Impeller. The modeling introduced in this paper adopts polynomial regression that is utilizing approximating technique. The measured data are obtained from measuring with Coordinate Measuring Machine. This paper introduces efficient methods of Reverse Engineering using Polynomial Regression.

  • PDF

REGRESSION FRACTIONAL HOT DECK IMPUTATION

  • Kim, Jae-Kwang
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.423-434
    • /
    • 2007
  • Imputation using a regression model is a method to preserve the correlation among variables and to provide imputed point estimators. We discuss the implementation of regression imputation using fractional imputation. By a suitable choice of fractional weights, the fractional regression imputation can take the form of hot deck fractional imputation, thus no artificial values are constructed after the imputation. A variance estimator, which extends the method of Kim and Fuller (2004), is also proposed. Results from a limited simulation study are presented.

Bayesian Analysis for a Functional Regression Model with Truncated Errors in Variables

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.77-91
    • /
    • 2002
  • This paper considers a functional regression model with truncated errors in explanatory variables. We show that the ordinary least squares (OLS) estimators produce bias in regression parameter estimates under misspecified models with ignored errors in the explanatory variable measurements, and then propose methods for analyzing the functional model. Fully parametric frequentist approaches for analyzing the model are intractable and thus Bayesian methods are pursued using a Markov chain Monte Carlo (MCMC) sampling based approach. Necessary theories involved in modeling and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed methods.

A Comparison Study on the Error Criteria in Nonparametric Regression Estimators

  • Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.335-345
    • /
    • 2000
  • Most context use the classical norms on function spaces as the error criteria. Since these norms are all based on the vertical distances between the curves, these can be quite inappropriate from a visual notion of distance. Visual errors in Marron and Tsybakov(1995) correspond more closely to "what the eye sees". Simulation is performed to compare the performance of the regression smoothers in view of MISE and the visual error. It shows that the visual error can be used as a possible candidate of error criteria in the kernel regression estimation.

  • PDF

Parameter Calibration of Storage Function Model and Flood Forecasting (2) Comparative Study on the Flood Forecasting Methods (저류함수모형의 매개변수 보정과 홍수예측 (2) 홍수예측방법의 비교 연구)

  • Kim, Bum Jun;Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.39-50
    • /
    • 2006
  • The flood control offices of main rivers have used a storage function model to forecast flood stage in Korea and studies of flood forecasting actively have been done even now. On this account, the storage function model, which is used in flood control office, regression models and artificial neural network model are applied into flood forecasting of study watershed in this paper. The result obtained by each method are analyzed for the comparative study. In case of storage function model, this paper uses the representative parameters of the flood control offices and the optimized parameters. Regression coefficients are obtained by regression analysis and neural network is trained by backpropagation algorithm after selecting four events between 1995 to 2001. As a result of this study, it is shown that the optimized parameters are superior to the representative parameters for flood forecasting. The results obtained by multiple, robust, stepwise regression analysis, one of the regression methods, show very good forecasts. Although the artificial neural network model shows less exact results than the regression model, it can be efficient way to produce a good forecasts.

On Predicting with Kernel Ridge Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 2003
  • Kernel machines are used widely in real-world regression tasks. Kernel ridge regressions(KRR) and support vector machines(SVM) are typical kernel machines. Here, we focus on two types of KRR. One is inductive KRR. The other is transductive KRR. In this paper, we study how differently they work in the interpolation and extrapolation areas. Furthermore, we study prediction interval estimation method for KRR. This turns out to be a reliable and practical measure of prediction interval and is essential in real-world tasks.

  • PDF

Binary Forecast of Heavy Snow Using Statistical Models

  • Sohn, Keon-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.369-378
    • /
    • 2006
  • This Study focuses on the binary forecast of occurrence of heavy snow in Honam area based on the MOS(model output statistic) method. For our study daily amount of snow cover at 17 stations during the cold season (November to March) in 2001 to 2005 and Corresponding 45 RDAPS outputs are used. Logistic regression model and neural networks are applied to predict the probability of occurrence of Heavy snow. Based on the distribution of estimated probabilities, optimal thresholds are determined via true shill score. According to the results of comparison the logistic regression model is recommended.