• 제목/요약/키워드: Regression Evaluation

Search Result 2,234, Processing Time 0.029 seconds

Development and Evaluation of Simple Regression Model and Multiple Regression Model for TOC Contentation Estimation in Stream Flow (하천수내 TOC 농도 추정을 위한 단순회귀모형과 다중회귀모형의 개발과 평가)

  • Jung, Jaewoon;Cho, Sohyun;Choi, Jinhee;Kim, Kapsoon;Jung, Soojung;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.625-629
    • /
    • 2013
  • The objective of this study is to develop and evaluate simple and multiple regression models for Total Organic Carbon (TOC) concentration estimation in stream flow. For development (using water quality data in 2012) and evaluation (using water quality data in 2011) of regression models, we used water quality data from downstream of Yeongsan river basin during 2011 and 2012, and correlation analysis between TOC and water quality parameters was conducted. The concentrations of TOC were positively correlated with Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), TN (Total Nitrogen), Water Temperature (WT) and Electric Conductivity (EC). From these results, simple and multiple regression models for TOC estimation were developed as follows : $TOC=0.5809{\times}BOD+3.1557$, $TOC=0.4365{\times}COD+1.3731$. As a result of the application evaluation of the developed regression models, the multiple regression model was found to estimate TOC better than simple regression models.

Quantifying the Process of Patent Right Quality Evaluation : Combined Application of AHP, Text Mining and Regression Analysis (특허권리성의 정량적 평가방법에 대한 연구 : AHP, 텍스트 마이닝, 회귀분석의 활용)

  • Yoon, Janghyeok;Song, Jaeguk;Ryu, Tae-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.17-30
    • /
    • 2015
  • Technology-oriented national R&D programs produce intellectual property as their final result. Patents, as typical industrial intellectual property, are therefore considered an important factor when evaluating the outcome of R&D programs. Among the main components of patent evaluation, in particular, the patent right quality is a key component constituting patent value, together with marketability and usability. Current approaches for patent right quality evaluation rely mostly on intrinsic knowledge of patent attorneys, and the recent rapid increase of national R&D patents is making expert-based evaluation costly and time-consuming. Therefore, this study defines a hierarchy of patent right quality and then proposes how to quantify the evaluation process of patent right quality by combining text mining and regression analysis. This study will contribute to understanding of the systemic view of the patent right quality evaluation, as well as be an efficient aid for evaluating patents in R&D program assessment processes.

A Study on the Emotional Evaluation of fabric Color Patterns

  • Koo, Hyun-Jin;Kang, Bok-Choon;Um, Jin-Sup;Lee, Joon-Whan
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.11-20
    • /
    • 2002
  • There are Two new models developed for objective evaluation of fabric color patterns by applying a multiple regression analysis and an adaptive foray-rule-based system. The physical features of fabric color patterns are extracted through digital image processing and the emotional features are collected based on the psychological experiments of Soen[3, 4]. The principle physical features are hue, saturation, intensity and the texture of color patterns. The emotional features arc represented thirteen pairs of adverse adjectives. The multiple regression analyses and the adaptive fuzzy system are used as a tool to analyze the relations between physical and emotional features. As a result, both of the proposed models show competent performance for the approximation and the similar linguistic interpretation to the Soen's psychological experiments.

  • PDF

A Study on Developing the Performance Evaluation Indicators of Defense R&D Test Development Projects (국방연구개발 시험개발사업 성과평가지표 개발에 관한 연구)

  • Lee, Hyung-Jun;Kim, Woo-Je;Kim, Chan-Soo
    • IE interfaces
    • /
    • v.23 no.1
    • /
    • pp.78-88
    • /
    • 2010
  • In this paper we develop a model for the performance evaluation of defense R&D test development projects based on analytic hierarchy process. First, evaluation indicators are collected through the related literature survey and a delphi inquiry method. Second, stepwise multiple linear regression is used for developing a hierarchical structure for analytic hierarchy process in the evaluation model, which can make the selected evaluation indicators of the hierarchical structure independent. Also we verify the effectiveness of proposed indicators of the performance evaluation by comparing with the existing evaluation indicators. The developed indicators for the performance evaluation is more reasonable and practical than the previous indicators on defense R&D test development projects.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Evaluation of the Probability of Detection Surface for ODSCC in Steam Generator Tubes Using Multivariate Logistic Regression (다변량 로지스틱 회귀분석을 이용한 증기발생기 전열관 ODSCC의 POD곡면 분석)

  • Lee, Jae-Bong;Park, Jai-Hak;Kim, Hong-Deok;Chung, Han-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.250-255
    • /
    • 2007
  • Steam generator tubes play an important role in safety because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. For this reason, the integrity of the tubes is essential in minimizing the leakage possibility of radioactive water. The integrity of the tubes is evaluated based on NDE (non-destructive evaluation) inspection results. Especially ECT (eddy current test) method is usually used for detecting the flaws in steam generator tubes. However, detection capacity of the NDE is not perfect and all of the "real flaws" which actually existing in steam generator tunes is not known by NDE results. Therefore reliability of NDE system is one of the essential parts in assessing the integrity of steam generators. In this study POD (probability of detection) of ECT system for ODSCC in steam generator tubes is evaluated using multivariate logistic regression. The cracked tube specimens are made using the withdrawn steam generator tubes. Therefore the cracks are not artificial but real. Using the multivariate logistic regression method, continuous POD surfaces are evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive evaluation of the cracked tubes. Length and depth of cracks are considered in multivariate logistic regression and their effects on detection capacity are evaluated.

  • PDF

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Risk Assesment for Large-scale Slopes Using Multiple Regression Analysis (다중회귀분석을 이용한 대규모 비탈면의 위험도 평가)

  • Lee, Jong-Gun;Chang, Buhm-Soo;Kim, Yong-Soo;Suk, Jae-Wook;Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.99-106
    • /
    • 2013
  • In this study, the correlation of evaluation items and safety rating for 104 of large-scale slopes along the general national road was analyzed. And, we proposed the regression model to predict the safety rating using the multiple regressions analysis. As the result, it is shown that the evaluation items of slope angle, rainfall and groundwater have a low correlation with safety rating. Also, the regression model suggested by multiple regression analysis shows high predictive value, and it would be possible to apply if the evaluation items of excavation condition and groundwater (rainfall) are not clear.

The Credit Evaluation System for Micro-small Sized Individual Firms Using the Analytic Hierarchy Process (AHP 모형을 활용한 소상공인 신용평가시스템 구축)

  • Lee, Ju-Min;Kim, Seung-Yeon;Ha, Eun-Ho;Roh, Tae-Hyup
    • The Journal of Information Systems
    • /
    • v.16 no.3
    • /
    • pp.109-132
    • /
    • 2007
  • In the paper, we builds an advanced new credit evaluation system for Micro-small sized individual firms through appropriate evaluation factors derived by logistic regression analysis for credit evaluation model using in Korean Federation of Credit Guarantee Foundations, and the weights of factors computed by analytic hierarchy process(AHP). Industry characteristics are more applied to previous credit model with the additional the financial fact-information and non-financial judgement-information. Our results show that the financial factors have become more important than three years ago. Moreover, in the non-financial factors, the fact-information factors consider more important then the judgement-information factors. A new credit evaluation system is developed based on this credit evaluation model.

  • PDF

A study on equating method based on regression analysis (회귀분석에 기초한 균등화 방법에 관한 연구)

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.513-521
    • /
    • 2010
  • Most of universities have carried out course evaluation to apply the performance appraisal for professor. But, course evaluation depends on characteristics of each class such as class size, type of lecture, evaluator's grade and so on. As the results, such characteristics of each class lead to serious bias which makes lecturers distrust the course evaluation results. Hence, we propose a equating method for the course evaluation by regression analysis which use stepwise variable selection. And we compare proposed method with the other method by Cho et al. (2009) with respect to efficiencies. Also we give the example to which the method is applied.