• Title/Summary/Keyword: Regioselective

Search Result 145, Processing Time 0.027 seconds

Regioselective Lithiation of $\alpha$-Methylpyridine Analogue and Its Trapping Reactions with $Me_2RSiCl(R = Me, tBuCH_2(Me_3Si)CH)$ ($\alpha$-Methylpyridine유도체의 국지 선택적 리튬화 반응과 $Me_2RSiCl(R = Me, tBuCH_2(Me_3Si)CH)$을 이용한 반응생성물의 확인반응)

  • Kim, Jeong Gyun;Park, Eun Mi;Son, Byeong Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.570-575
    • /
    • 1994
  • The metallation of $\alpha$-methylpyridine 1(a∼f) with n-BuLi produced $\alpha-methylenylpyridinium$ salt 3(a∼f) by elimination of butane. The trapping reactions of 3(a∼f) with $Me_3SiCl\;and\;Me_2SiClCH(SiMe_3)CH_2tBu$ produced only 4(a∼f) and 5(a∼f). The $\alpha$-hydrogen atom of silylated methylene group in 4(a∼f) is more reactive than unreacted $CH_3$ of 4(a∼f) itself and 1(a∼f) toward n-BuLi at low temperature in pentane medium.

  • PDF

Indium and Gallium-Mediated Addition Reactions

  • Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • Indium and gallium have emerged as useful metals in organic synthesis as a result of its intriguing chemical properties of reactivity, selectivity, and low toxicity. Although indium belongs to a main metal in group 13, its first ionization potential energy is very low and stable in H2O and O2. Therefore, indium-mediated organic reactions are of our current interest. On the basis of these properties of indium, many efficient indium-mediated organic reactions have been recently developed, such as the addition reactions of allylindium to carbonyl and iminium groups, the indium-mediated synthesis of 2-(2-hydroxyethyl)homoallenylsilanes, the indiummediated allylation of keto esters with allyl halides, sonochemical Reformatsky reaction using indium, the indium-mediated selective introduction of allenyl and propargyl groups at C-4 position of 2-azetidinones, the indium-mediated Michael addition and Hosomi-Sakurai reactions, the indium-mediated β-allylation, β- propargylation and β-allenylation onto α,β-unsaturated ketones, the highly efficient 1,4-addition of 1,3-diesters to conjugated enones by indium and TMSCl, and the intramolecular carboindation reactions. Also, we found gallium-mediated organic reactions such as addition reactions of propargylgallium to carbonyl group and regioselective allylgallation of terminal alkynes.

Synthesis and Antifungal Evaluation of 6-(N-arylamino)-7-methylthio-5,8-quinolinediones

  • Kim, Chung-Kyu;Choi, Jung-Ah;Kim, Sung-Hee
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.440-444
    • /
    • 1998
  • A series of 6-(N-arylamino)-7-methylthio-5,8-quinolinedione derivatives 4a-4l was newly synthesized for the evaluation of antifungal activity. 6-(N-Arylamino)-7-methylthio-5,8-quinolinediones were prepared by regioselective nucleophilic substitution of 6,7-dichloro-5,8-quinolinediones with arylamines in the presence of $Ce^{3+}$, and $Na_2$S/dimethylsulfate. The MIC values of 4a-4l were determined for antifungal susceptibility in vitro against Candida species by agar streak method. The derivatives 4a-4l had generally potent antifungal activities against all human pathogenic fungi. Especially they had the most potent activity against C. krusei at 12.5-0.8 $\mu\textrm{g}$/ml. Compounds 4d, 4g, 4h, 4j and 4k had more potent antifungal activities than fluconazole. Compounds 4g and 4h completely inhibited the fungal growth at 0.8-6.3 $\mu\textrm{g}$/ml against all Candida species, while fluconazole inhibited the growth at 25 $\mu\textrm{g}$/ml. The compounds such as 4g and 4h containing an N-(4-bromo-2-methylphenyl)- or N-(4-bromo-3methylphenyl)amino substituent exhibited the most potent antifungal activities.

  • PDF

Molecular Cloning and Characterization of Bacillus cereus O-Methyltransferase

  • Lee Hyo-Jung;Kim Bong-Gyu;Ahn Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.619-622
    • /
    • 2006
  • Biotransformation is a good tool to synthesize regioselective compounds. It could be performed with diverse sources of genes, and microorganisms provide a myriad of gene sources for biotransformation. We were interested in modification of flavonoids, and therefore, we cloned a putative O-methyltransferase from Bacillus cereus, BcOMT-2. It has a 668-bp open reading frame that encodes a 24.6-kDa protein. In order to investigate the modification reaction mediated by BcOMT-2, it was expressed in E. coli as a His-tag fusion protein and purified to homogeneity. Several substrates such as naringenin, luteolin, kaempferol, and quercetin were tested and reaction products were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). BcOMT-2 could transfer a methyl group to substrates that have a 3' functional hydroxyl group, such as luteolin and quercetin. Comparison of the HPLC retention time and UV spectrum of the quercetin reaction product with corresponding authentic 3'-methylated and 4'-methylated compounds showed that the methylation position was at either the 3'-hydroxyl or 4'-hydroxyl group. Thus, BcOMT-2 transfers a methyl group either to the 3'-hydroxyl or 4'-hydroxyl group of flavonoids when both hydroxyl groups are available. Among several flavonoids that contain a 3'- and 4'-hydroxyl group, fisetin was the best substrate for the BcOMT-2.

Exploratory Study of Photocyclization Reactions of N-(Trimethylsilylmethylthioalkyl)phthalimides

  • Ung Chan Yoon;Sang Jin Lee;Kyung Ja Lee;Sung Ju Cho;Chan Woo Lee;Patrick S. Mariano
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.154-161
    • /
    • 1994
  • Studies have been conducted to explore single electron transfer (SET) induced photocyclization reactions of N-(trimethylsilylmethylthioalkyl)phthalimides (alkyl=ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl). Photocyclizations occur in methanol in modest to high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the trimethylsilyl group. Mechanism for these photocyclizations involving intramolecular SET from sulfur in the ${\alpha}$-silylmethylthioalkyl groups to the singlet excited state phthalimide moieties followed by desilylation of the intermediate ${\alpha}$ -silylmethylthio cation radicals and cyclization by radical coupling is proposed. In contrast, photoreactions of N-(trimethylsilylmethylthioalkyl)phthalimides in acetone follow different reaction routes to produce another cyclized products in which carbon-carbon bond formation takes place between the phthalimide carbonyl carbon and the carbon ${\alpha}$ to silicon and sulfur atoms via triplet carbonyl hydrogen abstraction pathway. The normal singlet SET pathway dominates this triplet process for photoreactions of these substances in methanol while the triplet process dominates the singlet SET pathway for those in acetone. The efficient and regioselective cyclization reactions observed for photolyses in methanol represent synthetically useful processes for construction of medium and large ring heterocyclic compounds.

Recent progress in selective bioconjugation

  • Subramani Rajkumar;Abhinav Bhise;Kondapa Naidu Bobba;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.146-154
    • /
    • 2020
  • Selective installation of proteins using chemical reagents is important for the development of potential biomaterials for the treatment of human diseases. However, modification in a chemo- and regioselective manner under physiological conditions is a great challenge due to the presence of multiple reactive centers in the protein. Currently, the majority of conjugations are limited to lysine (Lys)- and cysteine (Cys)-selective reagents. Thus, they have been extensively studied. Apart from Lys and Cys, widespread site selectivity has been recently achieved through most of the 20 naturally occurring amino acid-bearing reactive functional groups. Consequently, this review focused on several recent achievements in site-selective modification of the rarest amino acid backbones (e.g., methionine, serine, glutamic acid, and tyrosine).

Synthesis of Optically Active Monoesters via Kinetic Resolution by Chiral Co (Salen) Complex Immobilized on Mesoporous BEA (메조세공 BEA에 고정화된 키랄 Co살렌 착체의 동적분할을 통한 고광학순도의 키랄 모노에스테르 합성)

  • Choi, Seong Dae;Park, Geun Woo;Lee, Gyung Chan;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.132-137
    • /
    • 2015
  • BEA-zeolite was modified by alkaline solution to introduce mesoporosity in the crystals and the homogeneous chiral Co(III) salen was immobilized in the mesopores. The dinuclear chiral Co(salen)-$GaCl_3$ catalyst immobilized on mesoporous BEA-zeolite showed high activity for the regioselective ring opening of terminal epoxides by carboxylic acids. Various chiral monoester derivatives could be synthesized with moderate enantioselectivity (47~69 ee%) from racemic epoxides through above reaction. When the chiral (S)-ECH was used as a reactant, it was efficiently resolved by carboxylic acid with a high enantioselectivity in the presence of heterogenized chiral salen catalyst, and the ring opened product afforded optically pure monoester epoxide (R)-GB (up to 98 ee%) through the ring closing in the basic solution by elimination of HCl. The heterogeneous catalyst could be fabricated easily, and the catalytic activity was retained for several times reuse without any further regeneration step.

Regioselective Oxidation of Lauric Acid by CYP119, an Orphan Cytochrome P450 from Sulfolobus acidocaldarius

  • Lim, Young-Ran;Eun, Chang-Yong;Park, Hyoung-Goo;Han, Song-Hee;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.574-578
    • /
    • 2010
  • Archaebacteria Sulfolobus acidocaldarius contains the highly thermophilic cytochrome P450 enzyme (CYP119). CYP119 possesses stable enzymatic activity at up to $85^{\circ}C$. However, this enzyme is still considered as an orphan P450 without known physiological function with endogenous or xenobiotic substrates. We characterized the regioselectivity of lauric acid by CYP119 using the auxiliary redox partner proteins putidaredoxin (Pd) and putidaredoxin reductase (PdR). Purified CYP119 protein showed a tight binding affinity to lauric acid ($K_d=1.1{\pm}0.1{\mu}M$) and dominantly hydroxylated (${\omega}-1$) position of lauric acid. We determined the steady-state kinetic parameters; $k_{cat}$ was 10.8 $min^{-1}$ and $K_m$, was 12 ${\mu}M$. The increased ratio to $\omega$-hydroxylated production of lauric acid catalyzed by CYP119 was observed with increase in the reaction temperature. These studies suggested that the regioselectivity of CYP119 provide the critical clue for the physiological enzyme function in this thermophilic archaebacteria. In addition, regioselectivity control of CYP119 without altering its thermostability can lead to the development of novel CYP119-based catalysts through protein engineering.

Regioselective Succinylation and Gelation Behavior of Glycol Chitosan

  • Jeong, Keun-Soo;Lee, Won-Bum;Cha, Ju-Eun;Park, Chong-Rae;Cho, Yong-Woo;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.57-61
    • /
    • 2008
  • Chitosan is normally acylated and subsequently conjugated with drugs for biomedical applications. This study examined the relationship between the succinylation and gelation behaviors of glycol chitosan. Glycol chitosan was acylated with succinic anhydride under a wide variety of reaction conditions, such as different molar ratios of succinic anhydride to glucosamine, different methanol content in the reaction media, and different reaction temperatures. Among these reaction parameters, the methanol content in the solvent played an important role in determining the regioseletive succinylating site. N-succinylation and N-N cross-linking occurred regardless of the reaction conditions. However, O-succinylation was observed under specific conditions, i.e. a methanol content> 0.6 (v/v) and a reaction temperature> $25^{\circ}C$. O-succinylation accelerated the N-O cross-linking of glycol chitosan, and led to gelation. The N-succinylated glycol chitosans were water-soluble, whereas the N-and O-succinylated glycol chitosans fonned a gel. These physico-chemical structural differences in the succinylated glycol chitosans would definitely influence subsequent drug-conjugation reactions and consequently the drug loading and release kinetics.

Regioselective Addition Reactions of the Organoindium Reagents onto α,β-Unsaturated Ketones

  • Lee, Phil-Ho;Kim, Hyun;Lee, Koo-Yeon;Seomoon, Dong;Kim, Sun-Dae;Kim, Hee-Chul;Kim, Hyun-Seok;Lee, Mi-Ae;Shim, Eun-Kyong;Lee, Seok-Ju;Kim, Mi-Sook;Han, Mi-Jeong;Noh, Kwang-Hyun;Sridhar, Madabhushi
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1687-1691
    • /
    • 2004
  • Regioselectivity on the reactions of ${\alpha},{\beta}$--enones with organoindium such as in situ generated allylindium and allenylindium was systematically studied in the presence of TMSCl as an additive. Treatment of 2-cyclohexen-1-one, carvone, 2-cyclohepten-1-one, and chalcone with allylindium reagent produced 1,4-addition products in good yields, while 2-cyclopenten-1-one, 2-methyl-2-cyclopenten-1-one, 4,4-dimethylcyclohexen-1-one, 3-nonen-2-one, 4-hexen-3-one, and 4-phenyl-3-buten-2-one afforded 1,2-addition products. Indium reagent derived from indium and propargyl bromide in Grignard type gave addition products in good yields, under which the successive addition of ${\alpha},{\beta}$-enone and TMSCl were necessary. Although organoindium reagent derived from propargyl bromide produced propargylated compound in Grignard type except 2-cyclohepten-1-one, indium reagent obtained from 1-bromo-2-butyne having ${\gamma}$-methyl group gave allenylated product inBarbier type.