Proceedings of the Korean Institute of Navigation and Port Research Conference
/
v.1
/
pp.235-240
/
2006
The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.
Localized heavy storm is one of the major causes of flood damage in urban regions. According to the recent disaster statistics in South Korea, the frequency of urban flood is increasing more frequently, and the scale is also increasing. However, localized heavy storm is difficult to predict, making it difficult for local government officials to deal with floods. This study aims to construct a Flood risk matrix (FRM) using ensemble weather prediction data and to assess its applicability as a means of reducing damage by securing time for such urban flood response. The FRM is a two-dimensional matrix of potential impacts (X-axis) representing flood risk and likelihood (Y-axis) representing the occurrence probability of dangerous weather events. To this end, a regional FRM was constructed using historical flood damage records and probability precipitation data for basic municipality in Busan and Daegu. Applicability of the regional FRMs was assessed by applying the LENS data of the Korea Meteorological Administration on past heavy rain events. As a result, it was analyzed that the flood risk could be predicted up to 3 days ago, and it would be helpful to reduce the damage by securing the flood response time in practice.
Wildfires in North Korea can have a directly or indirectly affect South Korea if they go south to the Demilitarized Zone. Therefore, this study calculates the regional optimized Forest Fire Danger Index (FFDI) based on Local Data Assessment and Prediction System (LDAPS) weather data to obtain forest fire risk in North Korea, and applied it to the cases in Goseong-gun and Cheorwon-gun, North Korea in April 2022. As a result, the suitability was confirmed as the FFDI at the time of ignition corresponded to the risk class Extreme and Severe sections, respectively. In addition, a qualitative comparison of the risk map and the soil moisture map before and after the wildfire, the correlation was grasped. A new forest fire risk index that combines drought factors such as soil moisture, Standardized Precipitation Index (SPI), and Normalized Difference Water Index (NDWI) will be needed in the future.
Do-Hyeong Kim;Dong-Wook Lee;Hee-Bok Choi;Kwon-Moon Ko
Journal of the Korean Geosynthetics Society
/
v.22
no.2
/
pp.55-61
/
2023
This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, In order to examine the application of lateral earth pressure to the earth retaining wall considering the typical ground characteristics (clinker layer) in Jeju. The prediction of the lateral earth pressure causing the horizontal displacement of the retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, it was confirmed that the maximum horizontal displacement predicted at site A was about 5 times larger than the measured value, and the ground with maximum horizontal displacement occurred by the prediction was found to be the clinker layer. In the case of site B, the predicted value was 4 to 7 times larger than the measured value. In addition, the ground with maximum horizontal displacement and the tendency of horizontal displacement were very different depending on the prediction method. This means that research on lateral earth pressure that can consider regional characteristics needs to be continued, because it is due to the multi-layered ground characteristics of the Jeju area in which bedrock layers and clinker layers are alternately distributed,
Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.
Kumar, P.M.Pratheesh;Pal, S.C.;Qadri, S.M.H.;Gangwar, S.K.;Saratchandra, B.
International Journal of Industrial Entomology and Biomaterials
/
v.6
no.2
/
pp.163-169
/
2003
Studies were conducted on the effect of pruning time, host age, conidial dispersal and weather parameters on the incidence and severity of mulberry leaf spot (Myrothecium roridum). The disease severity (%) increased with increase in shoot age irrespective of pruning date. Maximum disease severity was observed in plants pruned during first week of April and minimum disease severity in plants pruned during first week of March. Significant (P < 0.01) influence of date of pruning, shoot age and their interaction was observed on severity of the disease. Apparent infection rate (r) was significantly higher during the plant growth period from day 48 to day 55. Average apparent yale was higher in plants pruned during first week of April and least in plants pruned during first week of July. The disease infection was negatively correlated to distance from the inoculum source. Leaf spot severity (%) was influenced by weather parameters. Multiple regression analysis revealed contribution of various combinations of weather parameters on the disease severity. Linear prediction model $(Y = -81.803+1.176x_2+0.765x_3) with significant $R^2$ was developed for prediction of the disease under natural epiphytotic condition.
Recently, as the sensor and big data analysis technology have been developed, there have been a lot of researches that analyze the purchase-related data such as the trajectory information and the stay time. Such purchase-related data is usefully used for the purchase pattern prediction and the purchase time prediction. Because it is difficult to find periodic patterns in large-scale human data, it is necessary to look at actual data sets, find various feature patterns, and then apply a machine learning algorithm appropriate to the pattern and purpose. Although existing papers have been used to analyze data using various machine learning methods, there is a lack of statistical analysis such as finding feature patterns before applying the machine learning algorithm. Therefore, we analyze the purchasing data of Songjeong Maeil Market, which is a data gathering place, and finds some characteristic patterns through statistical data analysis. Based on the results of 1, we derive meaningful conclusions by applying the machine learning algorithm and present future research directions. Through the data analysis, it was confirmed that the number of visits was different according to the regional characteristics around Songjeong Maeil Market, and the distribution of time spent by consumers could be grasped.
Background: This study used receiver operating characteristic curve to analyze Surveillance, Epidemiology and End Results (SEER) Ewing sarcoma (ES) outcome data. The aim of this study was to identify and optimize ES-specific survival prediction models and sources of survival disparities. Materials and Methods: This study analyzed socio-economic, staging and treatment factors available in the SEER database for ES. 1844 patients diagnosed between 1973-2009 were used for this study. For the risk modeling, each factor was fitted by a Generalized Linear Model to predict the outcome (bone and joint specific death, yes/no). The area under the receiver operating characteristic curve (ROC) was computed. Similar strata were combined to construct the most parsimonious models. Results: The mean follow up time (S.D.) was 74.48 (89.66) months. 36% of the patients were female. The mean (S.D.) age was 18.7 (12) years. The SEER staging has the highest ROC (S.D.) area of 0.616 (0.032) among the factors tested. We simplified the 4-layered risk levels (local, regional, distant, un-staged) to a simpler non-metastatic (I and II) versus metastatic (III) versus un-staged model. The ROC area (S.D.) of the 3-tiered model was 0.612 (0.008). Several other biologic factors were also predictive of ES-specific survival, but not the socio-economic factors tested here. Conclusions: ROC analysis measured and optimized the performance of ES survival prediction models. Optimized models will provide a more efficient way to stratify patients for clinical trials.
Analyses of wind wave characteristics near the Korean marginal seas were performed in 2008 and 2009 by comparisons of an operational wind wave forecast model and ocean buoy data. In order to evaluate the model performance, its results were compared with the observed data from an ocean buoy. The model used in this study was very good at predicting the characteristics of wind waves near the Korean Peninsula, with correlation coefficients between the model and observations of over 0.8. The averaged Root Mean Square Error (RMSE) for 48 hrs of forecasting between the modeled and observed waves and storm surges/tide were 0.540 m and 0.609 m in 2008 and 2009, respectively. In the spatial and seasonal analysis of wind waves, long waves were found in July and September at the southern coast of Korea in 2008, while in 2009 long waves were found in the winter season at the eastern coast of Korea. Simulated significant wave heights showed evident variations caused by Typhoons in the summer season. When Typhoons Kalmaegi and Morakot in 2008 and 2009 approached to Korean Peninsula, the accuracy of the model predictions was good compared to the annual mean value.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.129-129
/
2011
본 연구에서는 강수예보의 선행시간을 확보하기 위하여 기상청 지상관측망 자료뿐만 아니라 MTSAT-1R 위성영상자료와 수치예보모형인 RDAPS(Regional Data Assimilation and Prediction System) 자료를 활용하고, 입력자료 사이의 물리적인 비선형 상관관계를 효과적으로 고려하기 위하여 인경신경망 기법을 적용한 단시간 강수예측모형을 개발하고자 하였다. 또한 강수의 변화특성을 반영하기 위하여 장마기(6월, 7월)와 태풍기(8월, 9월)로 세분화하여 인공신경망 구축을 위한 학습훈련을 수행하였다. 구축된 모형은 서울지점을 대상으로 선행시간 3, 6, 9, 12시간에 대해서 강수예측을 수행하였다. 2006부터 2008년까지 학습훈련 후 2009년 서울지점의 강수예측결과, 장마기의 상관계수는 각 선행시간에 대해서 0.6998, 0.6498, 0.4434, 0.2961, RMSE(Root Mean Square Error)는 0.7605, 2.8431, 3.1973, 4.2147, 태풍기 상관계수는 0.5368, 0.5089, 0.4164, 0.2392, RMSE는 1.2218, 2.3144, 3.9153, 5.2145로 나타났다. 각 선행시간별로 장마기의 예측결과가 태풍기보다 다소 정확하게 도출되었으며, 선행시간 9시간 이후부터는 정확도가 급격히 낮아지는 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.