• Title/Summary/Keyword: Regional flood damage characteristics

Search Result 32, Processing Time 0.029 seconds

Flood Damage Index regarding Regional Flood Damage Characteristics (지역별 홍수피해특성을 고려한 홍수피해지표 개발)

  • Park, Taesun;Yeo, Chang Geon;Choi, Minha;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.361-366
    • /
    • 2010
  • It would be helpful to evaluate the potential flood damage and compare quantitatively with each other when establishing the regional flood countermeasure and determining the execution of the restoration works and emergency action plans. The Flood Damage Index (FDI) in Korea, possible to estimate localized potential risks caused by flood damages, therefore, was proposed in this study. It was considered with the scale of regional flood damages including the regional characteristics and quantitative grounds. First, the four significant causes were categorized as natural, social, politic, and facilitative ones. And the eleven selected factors representing four causes were determined. Finally, the FDI was obtained by the weighting linear summation of the corrected 11 factors multiplied by the weighting values based on the professional questionnaires. Employing the FDI, the potential risk analysis about flood damages for 229 cities and counties in Korea was conducted. These results would be utilized as the essential basis for more rational and practical countermeasures and plans against flood damage.

Analysis of Regional Flood Damage Characteristics using Relationship between Flood Frequency and Damages (홍수피해 발생빈도-피해액 관계분석을 통한 지역별 홍수피해특성 분석)

  • Park, Tae-Sun;Choi, Min-Ha;Yeo, Chang-Geon;Lee, Seung-Oh
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.87-92
    • /
    • 2009
  • It has been considered only with the concerned regional damage costs whenever the restoration and flood control measures were established in Korea. If the relationship between regional flood frequency and damages is quantitatively analyzed, more resonable and reliable countermeasure for flood protection and restoration can be proposed. Historical data ('70~'07) about flood damage in Korea were utilized and analyzed to present such relationship using the point frequency analysis. Also, the quadrant analysis was employed to divide into 4 categories: high frequency-high damage, high frequency-low damage, low frequency-high damage, and low frequency-low damage. If the results from this study were utilized well in specific cities and counties in Korea, it would be helpful to establish the countermeasures and action plans for flood protection because it was possible to compare with the relationship between flood frequency and damage of each region. And it would be the fundamental data for estimating the effect of future flood protection plan.

Regression models on flood damage records by rainfall characteristics for regional flood damage estimates (지역별 홍수피해추정을 위한 강우특성에 대한 홍수피해자료의 회귀모형)

  • Lim, Yeon Taek;Choi, Hyun Il
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.302-311
    • /
    • 2020
  • There are limitations to cope with flood damage by structural strategies alone because both frequency and intensity of floods are increasing due to climate change. Therefore, it is one of the necessary factors in the nonstructural countermeasures to collect and analyze historical flood damage records for the future flood damage assessments. In order to estimate flood damage costs in Gyeongsangbuk-do where severe flood damage occurs frequently due to geographical and climatic effects, this paper has performed the regression analysis on flood damage records over the past 20 years (1999-2018) by rainfall characteristics, which is one of the major causes of flood damage. This paper has then examined the relationship between the terrain features and rainfall characteristics in the regional regression functions, and also estimated the flood damage risk for 100-year rainfall by using the regional regression functions presented for the 22 administrative districts in Gyeongsangbuk-do excluding Ulleung-gun. The flood damage assessment shows that the relatively high damage risk is estimated for county areas adjacent to the eastern coast in Gyeongsangbuk-do. The regional damage estimate functions in this paper are expected to be used as one of the nonstructural countermeasures to estimate flood damage risk for the design or forecasting rainfall data.

Urban Flood Regional Safety Assesment Model (도시지역 홍수재해에 대한 지역안전도 평가모형)

  • Lee, Chang-Hee;Lee, Suk-Min;Shin, Sang-Young;Yeo, Chang-Geon;Kim, Youn-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.376-379
    • /
    • 2007
  • In recent years, the natural damage associated with flood disaster has been dramatically increased. However, there is no rational method which reflects urban characteristics to estimate the regional safety assessment for flood disaster. The purpose of this study is to develop the regional safety assesment model for urban flood. Flood risk and reduction assesment were estimated by using the linear sum of the Z score of the assessment factors and the weight value of each factor from the expert survey data. And then the regional safety assessment was estimated by subtracting reduction factor value from risk factor value. GIS tool was used to estimate the factor assesment and integrated regional safety. This study can be used to determine the priority of flood protection project, execute the flood insurance and establish the urban plans and the flood mitigate plan.

  • PDF

Flood Risk Estimation Using Regional Regression Analysis (지역회귀분석을 이용한 홍수피해위험도 산정)

  • Jang, Ock-Jae;Kim, Young-Oh
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2009
  • Although desire for living without hazardous damages grows these days, threats from natural disasters which we are currently exposed to are quiet different from what we have experienced. To cope with this changing situation, it is necessary to assess the characteristics of the natural disasters. Therefore, the main purpose of this research is to suggest a methodology to estimate the potential property loss and assess the flood risk using a regional regression analysis. Since the flood damage mainly consists of loss of lives and property damages, it is reasonable to express the results of a flood risk assessment with the loss of lives and the property damages that are vulnerable to flood. The regional regression analysis has been commonly used to find relationships between regional characteristics of a watershed and parameters of rainfall-runoff models or probability distribution models. In our research, however, this model is applied to estimate the potential flood damage as follows; 1) a nonlinear model between the flood damage and the hourly rainfall is found in gauged regions which have sufficient damage and rainfall data, and 2) a regression model is developed from the relationship between the coefficients of the nonlinear models and socio-economic indicators in the gauged regions. This method enables us to quantitatively analyze the impact of the regional indicators on the flood damage and to estimate the damage through the application of the regional regression model to ungauged regions which do not have sufficient data. Moreover the flood risk map is developed by Flood Vulnerability Index (FVI) which is equal to the ratio of the estimated flood damage to the total regional property. Comparing the results of this research with Potential Flood Damage (PFD) reported in the Long-term Korea National Water Resources Plan, the exports' mistaken opinions could affect the weighting procedure of PFD, but the proposed approach based on the regional regression would overcome the drawback of PFD. It was found that FVI is highly correlated with the past damage, while PFD does not reflect the regional vulnerabilities.

Development of Flood Vulnerability Index Estimation System (이상홍수 취약성 평가 시스템의 개발)

  • Jang, Dae-Won;Kim, Byung-Sik;Kim, Bo-Kyung;Yang, Dong-Min;Seoh, Byung-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.410-413
    • /
    • 2008
  • We constructed the regional flood risk and damage magnitude using hazard and vulnerabilities which are climatic, hydrological, socio-economic, countermeasure, disaster probability components for DB construction on the GIS system. Also we developed the Excess Flood Vulnerability index estimation System(EFVS). By the construction of the System, we can perform the scientific flood management for the flood prevention and optional extreme flood defenses according to regional characteristics. In order to evaluate the performance of system, we applied EFVS to Anseong-chen in Korea, and the system's stabilization is appropriate to flood damage analysis.

  • PDF

Regional Safety Assesment Due to Urban Flood Using GIS (GIS를 이용한 도시홍수에 대한 지역안전도 평가)

  • Yeo, Chang-Geon;Seo, Geun-Soon;Song, Jae-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.68-77
    • /
    • 2011
  • Flood disasters on the metropolis where population and facilities were densely concentrated cause an enormous damage, therefore it is important to find risk and vulnerable area for floods, and then mid-long term disaster reduction plan should be established by the results. However, there is no rational method which reflects urban characteristics to estimate the regional safety for flood. so it is necessary to develop the standardized method of regional safety assesment due to urban flood. The proposed regional safety assesment model in this study was combined risk and mitigation score which consisted of three and two element, and 12 assesment factors which effect flood disasters were selected. And then the integrated regional safety was estimated by subtracting mitigation score from risk score. GIS tool was used to estimate the factor assesment and integrated regional safety. Developed regional safety assesment model was applied in Seoul to evaluate the suitability.

Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area (엔트로피 가중치를 활용한 지역별 홍수취약도 기반의 서울지역 강우기준 산정기법)

  • Lee, Seonmi;Choi, Youngje;Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.267-278
    • /
    • 2022
  • Recently Flood damage volume has increased as heavy rain has frequently occurred. Especially urban areas are a vulnerability to flooding damage because of densely concentrated population and property. A local government is preparing to mitigate flood damage through the heavy rain warning issued by Korea Meteorological Administration. This warning classification is identical for a national scale. However, Seoul has 25 administrative districts with different regional characteristics such as climate, topography, disaster prevention state, and flood damage severity. This study considered the regional characteristics of 25 administrative districts to analyze the flood vulnerability using entropy weight and Euclidean distance. The rainfall classification was derived based on probability rainfall and flood damage rainfall that occurred in the past. The result shows the step 2 and step 4 of rainfall classification was not significantly different from the heavy rain classification of the Korea Meteorological Administration. The flood vulnerability is high with high climate exposure and low adaptability to climate change, and the rainfall classification is low in the northern region of Seoul. It is possible to preemptively respond to floods in the northern region of Seoul based on relatively low rainfall classification. In the future, we plan to review the applicability of rainfall forecast data using the rainfall classification of results from this study. These results will contribute to research for preemptive flood response measures.

Development of regression functions for human and economic flood damage assessments in the metropolises (대도시에서의 인적·물적 홍수피해 추정을 위한 회귀함수 개발)

  • Lim, Yeon Taek;Lee, Jong Seok;Choi, Hyun Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1119-1130
    • /
    • 2020
  • Flood disasters have been recently increasing worldwide due to climate change and extreme weather events. Since flood damage recovery has been conducted as a common coping strategy to flood disasters in the Republic of Korea, it is necessary to predict the regional flood damage costs by rainfall characteristics for a preventative measure to flood damage. Therefore, the purpose of this study is to present the regression functions for human and economic flood damage assessments for the 7 metropolises in the Republic of Korea. A comprehensive regression analysis was performed through the total 48 simple regression models on the two types of flood damage records for human and economic costs over the past two decades from 1998 to 2017 using the four kinds of nonlinear equations with each of the six rainfall variables. The damage assessment functions for each metropolis were finally selected by the evaluation of the regression results with the coefficient of determination and the statistical significance test, and then used for the human and economic flood damage assessments for 100-year rainfall in the 7 metropolises. The results of this study are expected to provide the basic information on flood damage cost assessments for flood damage mitigation measures.

Application of Multi-Dimensional Flood Damage Analysis for Urban Flood Damage (다차원 홍수피해산정방법을 이용한 도시지역의 홍수피해액 산정)

  • Lee, Keon Haeng;Choi, Seung An;Kim, Hung Soo;Shim, Myung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.363-369
    • /
    • 2006
  • A simple and an improved methods for the economic analysis of the flood control project has been in previous studies in Korea. In 2004, the Multi-Dimensional Flood Damage Analysis (MD-FDA) was developed and now it is widely used for the economic analysis of flood control project. However, the MD-FDA was developed for general damage assessment and analysis without consideration of specific regional characteristics such as urban and rural areas. To compensate the MD-FDA for the application in urban area, a part of damage estimation components is modified and a component for the flood damage estimation is suggested. The component we suggest is for the consideration of the capability of stormwater pump stations in the study area. When flood is occurred in the urban area, the damage potential is larger than the rural area because of the concentration of human lives and properties. So, many stormwater pump stations are located in the urban area and the inundation depth is estimated by considering the capabilities of pump stations. We also compensate the damage components such as the damages of industrial area, and public facilities for the flood damage estimation of the urban area. The results by the compensated MD-FDA for the urban area application with those by original MD-FDA are compared. As a result the B/C ratio showed 6.75 and 5.51 respectively for the modified and original MD-FDA. This difference might be largely affected by the damage rate of the public facilities.