• Title/Summary/Keyword: Regional Network

Search Result 1,002, Processing Time 0.048 seconds

Analysis of Agenda-setting Changes in Alpine Agricultural of Uljin-gun Using Text-Mining - Focusing on the Keywords of Mass-media, Blog·Cafe - (텍스트마이닝 기법을 활용한 울진군 금강송 산지농업 의제설정 변화 - 매스미디어와 블로그·카페 키워드를 중심으로 -)

  • Do, Jee-Yoon;Jeong, Myeong-Cheol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.3
    • /
    • pp.47-57
    • /
    • 2022
  • This study attempted to grasp the status and perception of Uljin Geumgangsong by grasping mass media issues and user perception using big data, and to present basic data when constructing monitoring using user perception by examining the establishment relationship of agenda setting from a time-series perspective. The results of collecting and analyzing text data that can identify mass media and visitor awareness are as follows. First, both mass media and visitor keywords were related to the importance of the value and meaning of Uljin Geumgangsong. Second, in the case of the connection network, Geumgang Pine Agriculture was centered, but in the case of difference in perception between mass media and visitors, such results were derived due to the object of interest. Third, in the case of the connection relationship structure, the connection strength was strong because there were many overlapping contents of mass media. Fourth, as a result of the centrality analysis, both mass media and visitor-aware keywords were positively recognized as spaces created and maintained through institutional support, and objective perception could be grasped by finding hidden keywords. Fifth, as a result of time series analysis, it was possible to grasp the flow through the issue keywords that appeared by period, and unlike the past, it was recognized as a place for tourism and travel. Finally, as a result of examining whether the agenda setting is consistent, there is a mass media influence, so it is thought that more diverse and more information and publicity are needed by utilizing it.

Window Attention Module Based Transformer for Image Classification (윈도우 주의 모듈 기반 트랜스포머를 활용한 이미지 분류 방법)

  • Kim, Sanghoon;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.538-547
    • /
    • 2022
  • Recently introduced image classification methods using Transformers show remarkable performance improvements over conventional neural network-based methods. In order to effectively consider regional features, research has been actively conducted on how to apply transformers by dividing image areas into multiple window areas, but learning of inter-window relationships is still insufficient. In this paper, to overcome this problem, we propose a transformer structure that can reflect the relationship between windows in learning. The proposed method computes the importance of each window region through compression and a fully connected layer based on self-attention operations for each window region. The calculated importance is scaled to each window area as a learned weight of the relationship between the window areas to re-calibrate the feature value. Experimental results show that the proposed method can effectively improve the performance of existing transformer-based methods.

AI based complex sensor application study for energy management in WTP (정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구)

  • Hong, Sung-Taek;An, Sang-Byung;Kim, Kuk-Il;Sung, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.322-323
    • /
    • 2022
  • The most necessary thing for the optimal operation of a water purification plant is to accurately predict the pattern and amount of tap water used by consumers. The required amount of tap water should be delivered to the drain using a pump and stored, and the required flow rate should be supplied in a timely manner using the minimum amount of electrical energy. The short-term demand forecasting required from the point of view of energy optimization operation among water purification plant volume predictions has been made in consideration of seasons, major periods, and regional characteristics using time series analysis, regression analysis, and neural network algorithms. In this paper, we analyzed energy management methods through AI-based complex sensor applicability analysis such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units), which are types of cyclic neural networks.

  • PDF

The assessment of performances of regional frequency models using Monte Carlo simulation: Index flood method and artificial neural network model (몬테카를로 시뮬레이션을 이용한 지역빈도해석 기법의 성능 분석: 홍수지수법과 인공신경망 모델)

  • Lee, Joohyung;Seo, Miru;Park, Jaeheyon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.156-156
    • /
    • 2021
  • 본 연구는 지역빈도해석을 기반으로한 인공신경망 모델과 기존에 널리 사용되는 방법인 홍수지수법의 성능을 몬테카를로 시뮬레이션을 이용하여 평가하였다. 컴퓨터 기술이 발달함에 따라 인공지능에 대한 접근성이 좋아지며 수문학을 포함한 다양한 분야에 적용되고 있다. 인공지능을 이용하여 강수량 및 유량 등 다양한 수문자료에 대한 예측이 이루어지고 있으나 빈도해석에 관한 연구는 비교적 적다. 본 연구에서 사용된 인공 지능 모델은 대상 지점의 지형학적 자료와 수문학적 자료를 이용하여 인공신경망을 통해 지점의 확률강우량(QRT-ANN) 및 확률분포형의 매개변수 (PRT-ANN)를 추정한다. 지형학적 자료로는 위도, 경도 그리고 고도가 사용되었으며 수문학적 자료로는 대상 지점의 최근 30년 일일연최대강우량을 사용하였다. 지역빈도해석의 정확도는 지역 내 통계적 특성이 비슷한 지점들이 포함되면 될수록 높아진다. 통계적 특성으로는 불일치 척도, 이질성 척도, 적합성 척도가 있으며 다양한 조건의 통계적 특성에 따른 세 개의 지역빈도해석 방법의 성능을 평가하고자 하였다. 대상 지역 내 n개의 지점이 있다고 가정하였을 때, 홍수지수법의 경우 n-1개의 지점으로 추정한 지역 성장곡선을 이용하여 나머지 1개 지점의 확률강우량을 산정할 수 있으며 인공신경망 모델들 또한 n-1개 지점들의 자료를 이용하여 모델을 구축한 뒤 나머지 지점의 확률강우량 및 확률분포형의 매개변수를 예측할 수 있다. PRT-ANN의 경우 예측된 매개변수를 이용하여 확률강우량을 산정하며 시뮬레이션 시행마다 발생시킨 자료의 지점빈도해석 결과에 대한 나머지 세 방법의 평균 제곱근 상대오차 (Relative root mean square error, RRMSE)를 계산하였다. 몬테카를로 시뮬레이션을 이용한 성능 분석을 통하여 관측값의 다양한 통계적 특성에 맞는 지역빈도해석 방법을 제시할 수 있을 것으로 판단된다.

  • PDF

Current Status and Future Direction of the NIMS/KMA Argo Program (국립기상과학원 Argo 사업의 현황 및 추진 방향)

  • Baek-Jo Kim;Hyeong-Jun Jo;KiRyong Kang;Chul-Kyu Lee
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.561-570
    • /
    • 2023
  • In order to improve the predictability of marine high-impacts weather such as typhoon and high waves, the marine observation network is an essential because it could be rapidly changed by strong air-sea interaction. In this regard, the National Institute of Meteorological Sciences, Korea Meteorological Administration (NIMS/KMA) has promoted the Argo float observation program since 2001 to participate in the International Argo program. In this study, current status and future direction of the NIMS/KMA Argo program are presented through the internal meeting and external expert forum. To date, a total of 264 Argo floats have been deployed into the offshore around the Korean Peninsula and the Northwestern Pacific Ocean. The real-time and delayed modes quality control (QC) system of Argo data was developed, and an official regional data assembling center (call-sign 'KM') was run. In 2002, the Argo homepage was established for the systematic management and dissemination of Argo data for domestic and international users. The future goal of the NIMS/KMA Argo program is to improve response to the marine high-impacts weather through a marine environment monitoring and observing system. The promotion strategy for this is divided into four areas: strengthening policy communication, developing observation strategies, promoting utilization research, and activating international cooperation.

Fishing Boat Rolling Movement of Time Series Prediction based on Deep Network Model (심층 네트워크 모델에 기반한 어선 횡동요 시계열 예측)

  • Donggyun Kim;Nam-Kyun Im
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.376-385
    • /
    • 2023
  • Fishing boat capsizing accidents account for more than half of all capsize accidents. These can occur for a variety of reasons, including inexperienced operation, bad weather, and poor maintenance. Due to the size and influence of the industry, technological complexity, and regional diversity, fishing ships are relatively under-researched compared to commercial ships. This study aimed to predict the rolling motion time series of fishing boats using an image-based deep learning model. Image-based deep learning can achieve high performance by learning various patterns in a time series. Three image-based deep learning models were used for this purpose: Xception, ResNet50, and CRNN. Xception and ResNet50 are composed of 177 and 184 layers, respectively, while CRNN is composed of 22 relatively thin layers. The experimental results showed that the Xception deep learning model recorded the lowest Symmetric mean absolute percentage error(sMAPE) of 0.04291 and Root Mean Squared Error(RMSE) of 0.0198. ResNet50 and CRNN recorded an RMSE of 0.0217 and 0.022, respectively. This confirms that the models with relatively deeper layers had higher accuracy.

Calculation of Local Coordinate of Common Points for Coordinate Transformation by Trilateral Adjustment (좌표변환 공통점의 지역측지계 조정좌표 산출 - 삼변망조정계산의 활용 -)

  • Yang, Chul Soo;Kang, Sang-gu;Song, Wonho;Lee, Won Hui
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.103-115
    • /
    • 2024
  • Trilateral adjustment can complement the problem of transforming cadastral maps into World Geodetic Coordinate system. First, it is possible to determine adjusted coordinate of common points that match each other over a wide area. Second, calculations that focus on specific points can be performed. Third, a solution that maintains the shape of the regional network can be obtained through constraints. Thus, the point coordinates can be determined appropriately for the survey system. In addition, heterogeneous survey results that span regions with different coordinate origins can be calculated on a single origin coordinate. This improves the efficiency of the workflow in tranforming cadastral maps into World Geodetic Coordinate System.

Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study

  • Hyeong Woo Kim;Subin Lee;Jin Ho Yang;Yeonsil Moon;Jongho Lee;Won-Jin Moon
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1131-1141
    • /
    • 2023
  • Objective: Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. Materials and Methods: This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). Results: Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. Conclusion: Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.

Calculation of the target revenue water ratio of local waterworks considering economic feasibility (경제성을 고려한 지방상수도 목표 유수율 산정)

  • Donghong Kim;Jaebum Lee;Jungkwan Song;Taeho Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.311-324
    • /
    • 2023
  • As an advanced study on the method of calculating the target revenue water ratio of local waterworks through the leakage component analysis method proposed by Kim et al. (2022), this study developed a model to calculate the achievable revenue water ratio within the specified project cost, the required project cost to achieve the specified target revenue water ratio, and the economically appropriate target revenue water ratio level by considering the leakage reduction cost and leakage reduction benefit for each revenue water ratio improvement strategy, and conducted an applicability evaluation of the developed model using actual field data. The procedure for calculating the target revenue water ratio of local waterworks considering economics proposed in this study consists of three stages: physical data linkage model construction, leakage component analysis, and economic analysis, and the applicability was evaluated for Zone H with branch type and the Zone M network type. As a result of the application, it was calculated that approximately 32.5 billion won would be required to achieve the target revenue water ratio of 70% in the Zone H, and approximately KRW 10.5 billion would be required to achieve the target revenue water ratio of 75% in the Zone M. If the business scale of Zones H and M was corrected to 10,000 m3/day of water usage, the required project cost for a 1% improvement in the revenue water ratio of Zone H was calculated to be 0.7642 billion won and 0.4715 billion won for Zone M.

Roles of Cancer Registries in Enhancing Oncology Drug Access in the Asia-Pacific Region

  • Soon, Swee-Sung;Lim, Hwee-Yong;Lopes, Gilberto;Ahn, Jeonghoon;Hu, Min;Ibrahim, Hishamshah Mohd;Jha, Anand;Ko, Bor-Sheng;Lee, Pak Wai;MacDonell, Diana;Sirachainan, Ekaphop;Wee, Hwee-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2159-2165
    • /
    • 2013
  • Cancer registries help to establish and maintain cancer incidence reporting system, serve as a resource for investigation of cancer and its causes, and provide information for planning and evaluation of preventive and control programs. However, their wider role in directly enhancing oncology drug access has not been fully explored. We examined the value of cancer registries in oncology drug access in the Asia-Pacific region on three levels: (1) specific registry variable types; (2) macroscopic strategies on the national level; and (3) a regional cancer registry network. Using literature search and proceedings from an expert forum, this paper covers recent cancer registry developments in eight economies in the Asia-Pacific region - Australia, China, Hong Kong, Malaysia, Singapore, South Korea, Taiwan, and Thailand - and the ways they can contribute to oncology drug access. Specific registry variables relating to demographics, tumor characteristics, initial treatment plans, prognostic markers, risk factors, and mortality help to anticipate drug needs, identify high-priority research area and design access programs. On a national level, linking registry data with clinical, drug safety, financial, or drug utilization databases allows analyses of associations between utilization and outcomes. Concurrent efforts should also be channeled into developing and implementing data integrity and stewardship policies, and providing clear avenues to make data available. Less mature registry systems can employ modeling techniques and ad-hoc surveys while increasing coverage. Beyond local settings, a cancer registry network for the Asia-Pacific region would offer cross-learning and research opportunities that can exert leverage through the experiences and capabilities of a highly diverse region.