• Title/Summary/Keyword: Regional Climate Prediction

Search Result 96, Processing Time 0.039 seconds

Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System (지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구)

  • Kim, Ji Hye;Eom, Hyun-Min;Choi, Jong-Kuk;Lee, Sang-Min;Kim, Young-Ho;Chang, Pil-Hun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Impacts of Sea Surface Temperature (SST) assimilation to the prediction of upper ocean temperature is investigated by using a regional ocean forecasting system, in which 3-dimensional optimal interpolation is applied. In the present study, Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset is adopted for the daily SST assimilation. This study mainly compares two experimental results with (Exp. DA) and without data assimilation (Exp. NoDA). When comparing both results with OSTIA SST data during Sept. 2011, Exp. NoDA shows Root Mean Square Error (RMSE) of about $1.5^{\circ}C$ at 24, 48, 72 forecast hour. On the other hand, Exp. DA yields the relatively lower RMSE of below $0.8^{\circ}C$ at all forecast hour. In particular, RMSE from Exp. DA reaches $0.57^{\circ}C$ at 24 forecast hour, indicating that the assimilation of daily SST (i.e., OSTIA) improves the performance in the early SST prediction. Furthermore, reduction ratio of RMSE in the Exp. DA reaches over 60% in the Yellow and East seas. In order to examine impacts in the shallow costal region, the SST measured by eight moored buoys around Korean peninsula is compared with both experiments. Exp. DA reveals reduction ratio of RMSE over 70% in all season except for summer, showing the contribution of OSTIA assimilation to the short-range prediction in the coastal region. In addition, the effect of SST assimilation in the upper ocean temperature is examined by the comparison with Argo data in the East Sea. The comparison shows that RMSE from Exp. DA is reduced by $1.5^{\circ}C$ up to 100 m depth in winter where vertical mixing is strong. Thus, SST assimilation is found to be efficient also in the upper ocean prediction. However, the temperature below the mixed layer in winter reveals larger difference in Exp. DA, implying that SST assimilation has still a limitation to the prediction of ocean interior.

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach (Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측)

  • Kim, Tae-Geun;Yang, DooHa;Cho, YoungHo;Song, Kyo-Hong;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.

Rainfall Prediction using the QPM by Province of the Korean Peninsula (고해상도 강수량 진단 모형(QPM)을 이용한 한반도 도별 강수 예측)

  • Kim, Ji-Hye;Oh, Jai-Ho;Jung, Yoo-Rim;Her, Mo-Rang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.34-34
    • /
    • 2011
  • 최근 우리나라에서는 기상이변과 기후변화에 의한 국지성 집중호우의 발생으로 인해 인명 및 재산 피해가 증가하는 추세이다. 따라서 이러한 기상현상을 좀 더 정확하게 예측하고 이를 대응하고자 악기상 모형의 개발과 구축 및 활용에 대한 연구들이 활발하게 진행 중에 있다. GCM이 제공하고 있는 많은 유용한 정보에도 불구하고 대부분의 모델이 시 공간 분해능과 물리 과정의 한계점으로 인해 지역적인 기후 특성이나 변화를 예측하기에는 많은 문제점들이 나타나고 있다. GCM의 한계점을 극복하기 위한 방법으로 세밀한 규모의 기후 정보를 얻기 위해 복잡한 지형과 해안선, 호수, 식생, 지표특성과 같은 아격자 규모의 강제 효과를 반영할 수 있는 고해상도 지역 기후 모델(Regional Climate Model, RCM)의 필요성이 제기되었다. 본 연구에서는 전지구 20km 격자자료를 입력장으로 하여 8km 격자로 한반도를 포함하는 도메인에 대해 비정역학 완전 압축성 중규모 모델인 WRF를 이용하여 상세예측자료를 생산하고자 하였다. 강수 예측의 경우 돌발적으로 발생하는 경우가 많아, 이를 예측하기 위해서는 상세한 강수량 정보를 빠른 시간 내에 정확히 제공할 수 있는 모델을 사용하여야 한다. 강수의 경우 온도와는 달리 공간적 편차가 매우 커 지역적으로 정확한 강수량을 예측 하는데 어려움이 있다. 상세강수 예측을 위해 미세 격자 규모의 비 정역학 모형을 사용할 경우 계산양이 매우 늘어나기 때문에 장시간의 모형 적분 시간뿐 아니라, 상당한 컴퓨터 자원을 필요로 하므로 이에 대한 대안으로 지형효과를 포함한 강수량 진단 모형인 QPM(Quantitative Precipitation Model)을 사용하였다. 최종적으로 한반도의 복잡한 지형적 영향을 반영하기 위해 1 km의 수평해상도를 가지는 고해상도 강수량 진단 모형(QPM)과 상세한 지리적, 공간적 분석을 할 수 있는 ARCGIS를 이용하여 한반도 도별 상세 강수자료를 생산하고자 한다.

  • PDF

Estimation of Water Storage in Small Agricultural Reservoir Using Sentinel-2 Satellite Imagery (Sentinel-2 위성영상을 활용한 농업용 저수지 가용수량 추정)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Jang, Min-Won;Hong, Eun-Mi;Kim, Taegon;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Reservoir storage and water level information is essential for accurate drought monitoring and prediction. In particular, the agricultural drought has increased the risk of agricultural water shortages due to regional bias in reservoirs and water supply facilities, which are major water supply facilities for agricultural water. Therefore, it is important to evaluate the available water capacity of the reservoir, and it is necessary to determine the water surface area and water capacity. Remote sensing provides images of temporal water storage and level variations, and a combination of both measurement techniques can indicate a change in water volume. In areas of ungauged water volume, satellite remote sensing image acts as a powerful tool to measure changes in surface water level. The purpose of this study is to estimate of reservoir storage and level variations using satellite remote sensing image combined with hydrological statistical data and the Normalized Difference Water Index (NDWI). Water surface areas were estimated using the Sentinel-2 satellite images in Seosan, Chungcheongnam-do from 2016 to 2018. The remote sensing-based reservoir storage estimation algorithm from this study is general and transferable to applications for lakes and reservoirs. The data set can be used for improving the representation of water resources management for incorporating lakes into weather forecasting models and climate models, and hydrologic processes.

Distribution of Surface Solar Radiation by Radiative Model in South Korea (복사 모델에 의한 남한의 지표면 태양광 분포)

  • Zo, Il-Sung;Jee, Joon-Bum;Lee, Won-Hak;Lee, Kyu-Tae;Choi, Young-Jean
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.147-161
    • /
    • 2010
  • The temporal and spatial distributions of surface solar radiation were calculated by the one layer solar radiative transfer model(GWNU) which was corrected by multi layer Line-by-Line(LBL) model during 2009 in South Korea. The aerosol optical thickness, ozone amount, cloud fraction and total precipitable water were used as the input data for GWNU model run and they were retrieved from Moderate Resolution Imaging Spectrometer(MODIS), Ozone Monitoring Instrument(OMI), MTSAT-1R satellite data and the Regional Data Assimilation Prediction System(RDAPS) model result, respectively. The surface solar radiation was calculated with 4 km spatial resolution in South Korea region using the GWNU model and the results were compared with surface measurement(by pyranometer) data of 22 KMA solar sites. The maximum values(more than $5,400MJ/m^2$) of model calculated annual solar radiation were found in Andong, Daegu and Jinju regions and these results were corresponded with the MTSAT-1R cloud amount data. However, the spatial distribution of surface measurement data was comparatively different from the model calculation because of the insufficient correction and management problems for the sites instruments(pyranometer).

The Analysis of Regional Scale Topographic Effect Using MM5-A2C Coupling Modeling (국지규모 지형영향을 고려하기 위한 MM5-A2C 결합 모델링 특성 분석)

  • Choi, Hyun-Jeong;Lee, Soon-Hwan;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.210-221
    • /
    • 2015
  • The terrain features and surface characteristics are the most important elements not only in meteorological modeling but also in air quality modeling. The diurnal evolution of local climate over complex terrain may be significantly controlled by the ground irregularities. Such topographic features can affect a thermally driven flow, either directly by causing changes in the wind direction or indirectly, by inducing significant variations in the ground temperature. Over a complex terrain, these variations are due to the nonuniform distribution of solar radiation, which is highly determined by the ground geometrical characteristics, i.e. slope and orientation. Therefore, the accuracy of prediction of regional scale circulation is strong associated with the accuracy of land-use and topographic information in meso-scale circulation assessment. The objective of this work is a numerical simulation using MM5-A2C model with the detailed topography and land-use information as the surface boundary conditions of the air flow field in mountain regions. Meteorological conditions estimated by MM5-A2C command a great influence on the dispersion of mountain areas with the reasonable feature of topography where there is an important difference in orographic forcing.

Estimation and assessment of baseflow at an ungauged watershed according to landuse change (토지이용변화에 따른 미계측 유역의 기저유출량 산정 및 평가)

  • Lee, Ji Min;Shin, Yongchun;Park, Youn Shik;Kum, Donghyuk;Lim, Kyoung Jae;Lee, Seung Oh;Kim, Hungsoo;Jung, Younghun
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2014
  • Baseflow gives a significant contribution to stream function in the regions where climatic characteristics are seasonally distinct. In this regard, variable baseflow can make it difficult to maintain a stable water supply, as well as causing disruption to the stream ecosystem. Changes in land use can affect both the direct flow and baseflow of a stream, and consequently, most other components of the hydrologic cycle. Baseflow estimation depends on the observed streamflow in gauge watersheds, but accurate predictions of streamflow through modeling can be useful in determining baseflow data for ungauged watersheds. Accordingly, the objectives of this study are to 1) improve predictions of SWAT by applying the alpha factor estimated using RECESS for calibration; 2) estimate baseflow in an ungauged watershed using the WHAT system; and 3) evaluate the effects of changes in land use on baseflow characteristics. These objectives were implemented in the Gapcheon watershed, as an ungauged watershed in South Korea. The results show that the alpha factor estimated using RECESS in SWAT calibration improves the prediction for streamflow, and, in particular, recessions in the baseflow. Also, the changes in land use in the Gapcheon watershed leads to no significant difference in annual baseflow between comparable periods, regardless of precipitation, but does lead to differences in the seasonal characteristics observed for the temporal distribution of baseflow. Therefore, the Guem River, into which the stream from the Gapcheon watershed flows, requires strategic seasonal variability predictions of baseflow due to changes in land use within the region.

Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea (한반도 적설심 재분석자료의 오차 및 불확실성 평가)

  • Jeon, Hyunho;Lee, Seulchan;Lee, Yangwon;Kim, Jinsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.543-551
    • /
    • 2023
  • Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.

Evaluation of Regional Flowering Phenological Models in Niitaka Pear by Temperature Patterns (경과기온 양상에 따른 신고 배의 지역별 개화예측모델 평가)

  • Kim, Jin-Hee;Yun, Eun-jeong;Kim, Dae-jun;Kang, DaeGyoon;Seo, Bo Hun;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.268-278
    • /
    • 2020
  • Flowering time has been put forward due to the recent abnormally warm winter, which often caused damages of flower buds by late frosts persistently. In the present study, cumulative chill unit and cumulative heat unit of Niitaka pear, which are required for releasing the endogenous dormancy and for flowering after breaking dormancy, respectively, were compared between flowering time prediction models used in South K orea. Observation weather data were collected at eight locations for the recent three years from 2018-2020. The dates of full bloom were also collected to determine the confidence level of models including DVR, mDVR and CD models. It was found that mDVR model tended to have smaller values (8.4%) of the coefficient of variation (cv) of chill units than any other models. The CD model tended to have a low value of cv (17.5%) for calculation of heat unit required to reach flowering after breaking dormancy. The mDVR model had the most accurate prediction of full bloom during the study period compared with the other models. The DVR model usually had poor skills in prediction of full bloom dates. In particular, the error of the DVR model was large especially in southern coastal areas (e.g., Ulju and Sacheon) where the temperature was warm. Our results indicated that the mDVR model had relatively consistent accuracy in prediction of full bloom dates over region and years of interest. When observation data for full bloom date are compiled for an extended period, the full bloom date can be predicted with greater accuracy improving the mDVR model further.

Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region (열대 태평양 SSTA 패턴 변화에 따른 우리나라 여름철 수문 변동 분석)

  • Yoon, Sun-kwon;Kim, Jong-Suk;Lee, Tae-Sam;Moon, Young-IL
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.49-63
    • /
    • 2016
  • In this study, we analyzed the effects of regional hydrologic variability during warm season (June-September) in South Korea due to ENSO (El $Ni{\tilde{n}}o$-Southern Oscillation) pattern changes over the Tropical Pacific Ocean (TPO). We performed composite analysis (CA) and statistical significance test by Student's t-test using observed hydrologic data (such as, precipitation and streamflow) in the 113 sub-watershed areas over the 5-Major River basin, in South Korea. As a result of this study, during the warm-pool (WP) El $Ni{\tilde{n}}o$ year shows a significant increasing tendency than normal years. Particularly, during the cold-tongue (CT) El $Ni{\tilde{n}}o$ decaying years clearly decreasing tendency compared to the normal years was appeared. In addition, the La $Ni{\tilde{n}}a$ years tended to show a slightly increasing tendency and maintain the average year state. In addition, from the result of scatter plot of the percentage anomaly of hydrologic variables during warm season, it is possible to identify the linear increasing tendency. Also the center of the scatter plot shows during the WP El $Ni{\tilde{n}}o$ year (+17.93%, +26.99%), the CT El $Ni{\tilde{n}}a$ year (-8.20%, -15.73%), and the La $Ni{\tilde{n}}a$ year (+8.89%, +15.85%), respectively. This result shows a methodology of the tele-connection based long-range water resources prediction for reducing climate forecasting uncertainty, when occurs the abnormal SSTA (such as, El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$) phenomenon in the TPO region. Furthermore, it can be a useful data for water managers and end-users to support long-range water-related policy making.