• Title/Summary/Keyword: Region-based segmentation

Search Result 558, Processing Time 0.027 seconds

Baseline Searching Method for Document Skew Detection (문서 영상의 기울기 검출을 위한 기준선 탐색 기법)

  • Shin, Myoung-Jin;Kim, Do-Hyeon;Cha, Eui-Young
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.218-225
    • /
    • 2007
  • This paper presents a technique to detect a document skew that often occurs during document scanning. To correct a skewed document is essential for automatic processing system including character segmentation, character recognition and so on. The proposed algorithm can detect a skew angle exactly by searching characters baselines that have slant information of the document within a candidated area. To reduce processing time, we resized the image small and then established a ROI (region of interest) by morphology operations and connected components analysis. We compared our method with the existing method based on morphology operations and proved correctness and efficiency of the proposed algorithm through experiments and analysis with various kind of document images.

  • PDF

A Study on Improving Speed of Interesting Region Detection Based on Fully Convolutional Network (Fully Convolutional Network 기반 관심 영역 검출 기법의 속도 개선 연구)

  • Hwang, Hyun-Su;Jung, Jin-woo;Kim, Yong-Hwan;Choe, Yoon-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.322-325
    • /
    • 2018
  • 영상의 관심 영역 검출은 영상처리 및 컴퓨터 비전 응용 분야에서 꾸준하게 사용되고 있는 기법이다. 특히, 근래 심층신경망 연구의 급격한 발전에 힘입어 심층신경망을 이용한 관심 영역 검출 기법에 대한 연구가 활발하게 진행되고 있다. 한편 Fully Convolutional Network(이하 FCN)은 본래 심층 예측(Dense Prediction)을 통한 의미론적 영상 분할(Semantic Segmentation)을 수행하기 위해 제안된 심층신경망 구조이다. FCN을 영상의 관심 영역 검출에 활용하여도 기존 관심 영역 검출 기법과 비교하여 충분히 좋은 성능을 발휘할 수 있다. 그러나 FCN에 사용되는 convolution 층의 수가 많고, 이에 따른 가중치(weight)의 개수도 기하급수적으로 늘어나 검출에 필요한 시간 복잡도가 매우 크다는 문제점이 있다. 따라서 본 논문에서는 기존 FCN이 가진 검출 시간 복잡도의 문제점을 convolution 층의 가중치 관점에서 해결하고자 이를 조절하여 FCN의 관심 영역 검출 속도를 향상시키는 방법을 제안한다. 적절한 convolution 층의 가중치를 조절함으로써, MSRA10K 데이터셋 환경에서 검출 정확도를 크게 저하시키지 않고도 최대 약 20.5%만큼 검출 속도를 향상시킬 수 있었다.

  • PDF

Quality Evaluation of Chest X-ray Images using Region Segmentation based on 3D Histogram (3D 히스토그램 기반 영역분할을 이용한 흉부 X선 영상 품질 평가)

  • Choi, Hyeon-Jin;Bea, Su-Bin;Park, Ye-Seul;Lee, Jung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.903-906
    • /
    • 2021
  • 인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.

Effective Road Area Extraction in Satellite Images Using Texture-Based BP Neural Network (텍스쳐 기반 BP 신경망을 이용한 위성영상의 도로영역 추출)

  • Xu, Zheng;Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • This paper proposes a road detection method using BP(Back-Propagation) neural network based on texture information of the each candidate road region segmented for satellite images. To segment the candidate road regions, the histogram-based binarization method proposed by N.Otsu is firstly performed and the neighboring regions surrounding road regions are then removed. And after extracting the principal color using the histogram of the segmented foreground, the candidate road regions are classified into the regions within ${\pm}25$ of the principal color. Finally, the road regions are segmented using BP neural network based on texture information of the candidate regions. The texture information in this paper is calculated using co-occurrence matrix and is used as an input data of the BP neural network. The proposed method is based on the fact that the road has the constant intensity and shape. The experiment demonstrated the validity of the proposed method and showed 90% detection accuracy for the various images.

  • PDF

Robust Real-Time Lane Detection in Luminance Variation Using Morphological Processing (형태학적 처리를 이용한 밝기 변화에 강인한 실시간 차선 검출)

  • Kim, Kwan-Young;Kim, Mi-Rim;Kim, In-Kyu;Hwang, Seung-Jun;Beak, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1101-1108
    • /
    • 2012
  • In this paper, we proposed an algorithm for real-time lane detecting against luminance variation using morphological image processing and edge-based region segmentation. In order to apply the most appropriate threshold value, the adaptive threshold was used in every frame, and perspective transform was applied to correct image distortion. After that, we designated ROI for detecting the only lane and established standard to limit region of ROI. We compared performance about the accuracy and speed when we used morphological method and do not used. Experimental result showed that the proposed algorithm improved the accuracy to 98.8% of detection rate and speed of 36.72ms per frame with the morphological method.

Automatic Liver Segmentation by using Gray Value Portion in Enhanced Abdominal CT Image (조영제를 사용한 복부CT영상에서 명암값 비율을 이용한 간의 자동 추출)

  • Yu, Seung-Hwa;Jo, Jun-Sik;No, Seung-Mu;Sin, Gyeong-Suk;Park, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.179-190
    • /
    • 2001
  • In this proposed study, observing and analyzing contrast enhanced abdominal CT images, we segmented the liver automatically. We computed the ratio of each gray value from the estimated gray value range. With the average value of mesh image, we distinguished the liver from the noise parts. We divided the region based on immersion simulation. The threshold value is determined from the mesh image which is generated from each gray value portion of the liver and is used in dividing the liver to the noise region. To get the outline of the liver, we generated template image which represents the lump of the liver, and subtracted it from the binary image. With the results we use the proposed algorithm using 8-connectivity instead of the present opening algorithm, to reduce the processing time. We computed the volume from the segmented organ size and presented a clinical demonstration with the animal experiment

  • PDF

Speech Recognition on Korean Monosyllable using Phoneme Discriminant Filters (음소판별필터를 이용한 한국어 단음절 음성인식)

  • Hur, Sung-Phil;Chung, Hyun-Yeol;Kim, Kyung-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 1995
  • In this paper, we have constructed phoneme discriminant filters [PDF] according to the linear discriminant function. These discriminant filters do not follow the heuristic rules by the experts but the mathematical methods in iterative learning. Proposed system. is based on the piecewise linear classifier and error correction learning method. The segmentation of speech and the classification of phoneme are carried out simutaneously by the PDF. Because each of them operates independently, some speech intervals may have multiple outputs. Therefore, we introduce the unified coefficients by the output unification process. But sometimes the output has a region which shows no response, or insensitive. So we propose time windows and median filters to remove such problems. We have trained this system with the 549 monosyllables uttered 3 times by 3 male speakers. After we detect the endpoint of speech signal using threshold value and zero crossing rate, the vowels and consonants are separated by the PDF, and then selected phoneme passes through the following PDF. Finally this system unifies the outputs for competitive region or insensitive area using time window and median filter.

  • PDF

Development of Medical Image Processing Algorithm for Clinical Decision Support System Applicable to Patients with Cardiopulmonary Function (심폐기능 재활환자용 임상의사결정지원시스템을 위한 의료영상 처리 기술 개발)

  • Park, H.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2015
  • Chest X-ray images is the most common and widely used in clinical findings for a wide range of anatomical information about the prognosis of the disease in patients with cardiopulmonary rehabilitation. Many analysis algorithm was developed by a number of studies regarding the region segmentation and image analysis, there are specific differences due to the complexity and diversity of the image. In this paper, a diagnosis support system of the chest X-ray image based on image processing and analysis methods to detect the cardiopulmonary disease. The threshold value and morphological method was applied to segment the pulmonary region in a chest X-ray image. Anatomical measurements and texture analysis was performed on the segmented regions. The effectiveness of the proposed method is shown through experiments and comparison with diagnosis results by clinical experts to show that the proposed method can be used for decision support system.

  • PDF

Design of Image Recognition Module for Face and Iris Area based on Pixel with Eye Blinking (눈 깜박임 화소 값 기반의 안면과 홍채영역 영상인식용 모듈설계)

  • Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • In this paper, an USB-OTG (Uiversal Serial Bus On-the-go) interface module was designed with the iris information for personal identification. The image recognition algorithm which was searching face and iris areas, was proposed with pixel differences from eye blinking after several facial images were captured and then detected without any activities like as pressing the button of smart phone. The region of pupil and iris could be fast involved with the proper iris area segmentation from the pixel value calculation of frame difference among the images which were detected with two adjacent open-eye and close-eye pictures. This proposed iris recognition could be fast processed with the proper grid size of the eye region, and designed with the frame difference between the adjacent images from the USB-OTG interface with this camera module with the restrict of searching area in face and iris location. As a result, the detection time of iris location can be reduced, and this module can be expected with eliminating the standby time of eye-open.

Main Region and Color Extraction of Face for Heart Disease Diagnosis (심장 질환 진단을 위한 얼굴 주요 영역 및 색상 추출)

  • Cho Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.215-222
    • /
    • 2006
  • People health improvement is becoming new subject through the combining with the oriental medicine diagnosis theory and IT technology. To do this, firstly, it needs sicked data that supply the visualization, objectification and quantification method. Especially, if an ocular inspection can be more objective and visual expression in oriental medicine, it seems to offer the biggest opportunity in diagnosis field. In this study, I propose a diagnosis to check the symptoms of heart diagnosis. Our research aim is on the visualization of diagnosis using image processing system which it can be actual analysis about the symptom of heart. To catch up this study, through the color support assistance by face image processing, I devide the face area and analyze the face form and also extract face characteristic point in heart disease diagnosis using oriental medicine based on an ocular inspection method. I would like to prove the usefulness of the method that proposed by an experiment.