In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.
An image coding technique based on a segmentation, which utilizes a simplified description of regions composing an image, is investigated in this paper. The proposed coding technique consists of 3 stages: segmentation, contour coding. In this paper, emphasis was given to texture coding in order to improve a quality of an image. Split-and-merge method was employed for a segmentation. In the texture coding, a linear predictive coding(LPC), along with approximation technique based on a two-dimensional polynomial function was used to encode texture components. Depending on a size of region and a mean square error between an original and a reconstructed image, appropriate texture coding techniques were determined. A computer simulation on natural images indicates that an acceptable image quality at a compression ratio as high as 15-25 could be obtained. In comparison with a discrete cosine transform coding technique, which is the most typical coding technique in the first-generation coding, the proposed scheme leads to a better quality at compression ratio higher than 15-20.
본 논문에서는 자연영상에 대한 돌출영역을 자동으로 검출하고 이를 분할하기 위한 새로운 인공시각집중모델을 제안한다. 제안된 모델은 인간의 생물학적 시각인지 기반이며 주된 특징은 다음과 같다. 먼저 영상의 강도특징과 색상특징을 사용하는 대립과정이론 기반의 새로운 인공시각집중모델의 구조를 제안하고, 돌출영역을 인지하기 위해 영상의 강도 및 색상 특징채널의 정보량을 고려하는 엔트로피 필터를 설계하였다. 엔트로피 필터는 높은 정확도와 정밀도로 돌출영역에 대해 검출 및 분할이 가능하다. 마지막으로 최종 돌출지도를 효율적으로 구성하기 위한 적응 조합 방법 또한 제안되었다. 이 방법은 각 인지 모델로부터 검출된 강도 및 색상 가시성지도에 대하여 평가하며 평가된 점수로부터 얻어진 가중치를 이용해 가시성 지도들을 조합한다. 돌출지도에 대해 ROC분석을 이용한 AUC를 측정한 결과 기존 최신의 모델들은 평균 0.7824의 성능을 나타낸 반면 제안된 모델의 AUC는 0.9256으로서 약 15%의 성능 개선을 보였다. 또한 돌출영역 분할에 대해 F-beta를 측정한 결과 기존 최신의 모델은 0.5178이고 제안된 모델은 0.7325로서 분할 성능 또한 약 22%의 성능 개선을 보였다.
본 논문에서는 얼굴과 동공을 검색하는 새로운 기법을 제시하며, 안전운행을 위한 운전자의 동공 감시에 적용한 실험결과를 포함하고 있다. 제시된 기법은 세 단계 주요 과정을 거치는데, 먼저 스킨칼라 세그먼테이션 기법으로 얼굴을 찾는 과정으로 이는 지금까지 사용된 휴리스틱모델이 아닌 학습과정 모델에 기반을 두고 있다. 다음에 얼굴 특징 세그먼테이션으로 눈, 입, 눈썹 등의 부분을 검출 하는데, 이를 위해 얼굴 각 부분에서 추출한 고유 특징들에 대한 PDF 추정을 사용하고 있다. 마지막으로 서큘러 하프 변환기법으로 눈 안의 동공을 찾아낸다. 제시된 기법을 조명이 다른 웹 얼굴 영상과 운전자의 CCD 얼굴 영상에 적용하여 동공을 찾아내는 실험을 하여, 높은 동공 검출율을 확인하였다.
멀티미디어 표준안으로 제안된 MPEG-4는 객체기반 부호화 방식으로서, 객체를 효율적으로 분할하는 것은 MPEG-4에 있어 중요한 관건이다. 지금까지 이 분야에 대한 연구는 주로 rigid object를 대상으로 하였으나, 본 논문에서는 non-rigid object, 특히 구름이나 연기와 같은 non-rigid object를 대상으로 하여 효율적인 영역 분할 방식을 연구하였다. Non-rigid object는 모양이나 크기가 일정치 않으며 시간에 따라 형태도 변형되므로 정확히 분할해내는 것은 쉽지 않다. 따라서 본 논문에서는 이를 효율적으로 극복하기 위해 정지 영상에서는 watershed 알고리즘을 사용하여 non-rigid object를 분할해 주었다. 그리고 동영상에서는 intra-frame segmentation과 inter-frame segmentation을 통해 연속되는 프레임 내 관심 있는 객체의 경계선을 자동으로 추출해 주었다. 이 때 영상 내 경계 정보와 영역 정보 각각에 가중치를 두어 원하는 객체를 보다 정확히 추출해 주었다.
본 논문은 영역분할 정보를 이용한 움직임 추정 기법을 제안하고자 한다 움직임 추정은 연산량이 매우 방대해서 소프트웨어적인 실시간 구현이 매우 어렵고 전용 칩을 사용하여 구현하고 있다 본 논문에서는 영역 분할 정보 및 가변 탐색 창 설정을 통해서 FSMA에 비해 연산량을 줄이는 영역 기반 움직임 추정 기법을 제안한다 둘째로, 분할된 영역 중 얼굴과 같은 의미를 갖는 영역을 선택적으로 부호화하기 위한 인식 기법을 제안하고자 한다 의미 영역 인식의 기본 취지는 화상 회의나 화상 전화와 같은 대체로 움직임이 적고 화자 중심으로 이루어진 영상에서 화자의 살색 영역 즉, 얼굴 영역을 우선 보호하여 주관적인 화질을 개선하자는 데에 있다.
MPEG-4와 같은 객체 기반 부호화는 멀티미디어 응용을 위한 다양한 내용 기반 기능들을 제공한다. 압축 효율의 향상과 더불어 이러한 기능들이 지원되도록 하기 위해서는 비디오 데이터의 각 프레임은 비디오 객체로 분할되어야 한다. 본 논문에서는 비선형 다중스케일 필터링과 시공간 정보를 사용한 효과적인 비디오 객체 분할 기법을 제안한다. 제안된 방법은 안정화된 역 확산 방정식(Stabilized Inverse Diffusion Equation : SIDE)에 기반한 비선형 다중스케일 필터링을 사용하여 공간적 분할을 수행한다. 또한 구해진 초기 분할된 영역들은 인접 영역 그래프 (Region Adjacency Graph : RAG)를 사용하여 병합된다. 본 논문에서는 통계적 유의성 검사(Statistical significance test)와 시변 메모리(Time-variant memory)를 시간적 분할 방법으로 사용하며 구해진 공간적 분할과 시간적 분할을 결합하여 최종 객체 영역을 효과적으로 분할한다. 본 논문에서 제안된 공간적 분할 방법은 기존의 형태학적 Watershed 알고리즘에 비해 잡음에 강인한 분할 특성을 나타내었으며 기존의 A. Neri의 방법과 비교하였을 때, 최종 분할된 객체 영역의 정확도 비율이 Akiyo는 43%, Claire는 29% 정도 향상됨을 확인할 수 있었다.
많은 연구 데모용 프로그램들과 상업적 응용물들이 얼굴 검출과 얼굴 인식 시스템들을 개발하기 위해 시도되고 있다. 인간의 얼굴 검출은 접근 제어 및 비디오 감시 시스템, 휴먼 컴퓨터 인터페이스, 신원 인증 등과 같은 많은 응용 프로그램들에 중요한 역할을 한다. 일반적으로 스킨 영역 분할 후 배경과 연결된 얼굴, 스킨 칼라로 인한 연결된 얼굴들, 여러 개의 작은 부분들로 분할된 하나의 얼굴과 같은 몇 가지 특별한 문제점들이 있다. 많은 얼굴 검출 기법들이 첫 번째 와 두 번째 문제를 해결하도록 허락되어진다. 그러나 세 번째 문제에서 다른 조명 효과들로 인해서 여러 영역들로 분할된 하나의 얼굴이 검출되어지는 것은 쉽지가 않다. 그러므로 우리는 기존 영역 분할 알고리즘은 이용될 수 없기 때문에 이 문제를 해결하기 위해 효율적인 수정된 스킨 분할 알고리즘을 제안한다. 본 알고리즘은 전체 영상에 대해 피부 영역을 검출한 후 피부 분할 알고리즘을 사용하여 얼굴 후보 영역들을 생성한다. 각 얼굴 피부 후보 영역에 대해 그림자 등의 조명 효과로 인해 한 명의 얼굴이 여러 영역으로 분할되는 경우를 처리하기 위해 동차적 영역간의 인접성을 활용하여 하나의 큰 영역으로 만드는 병합 작업을 시도하였다. 다른 크기의 얼굴 검출을 위해 다양한 가변 크기의 탐색 윈도우와 선택된 각 얼굴 후보 영역에 얼굴이 존재하는지를 판단하기 위해 역전파 알고리즘에 기반한 얼굴 검출 분류기를 사용하였다.
본 논문에서는 일반적으로 잡음이 있는 MR 영상의 배경 영역을 영역분활 알고리듬으로 제거하고 이영역분할의 정보를 손실 부호화에 이용함으로써 데이터의 압축 효율을 높이는 방법을 제안한다. 영역분할 알고리듬은 여역의특성 추출을 위해 전해상도 웨이블렛 변화(full-resolution wavelet transform)을 이용하며, 얻은 특성등의 분류를 위해 Kohonen self-organizing map을 사용한다. 웨이블렛 변환을 이용한 부호기에서는 영역분활 결과 진단에 의미없는 부분으로 판단된 영역은 부호화 하지 않음으로써 압축효율을 향상시킨다. 제안한 알고리듬으로 MR영상들을 부호화한 결과, 영역분할 정보를 이용하지 않을 경우보다 평균적으로 약 15%정도의 비트율의 절약을 가져올 수 있었으며, 같은 압축률일 경우에는 복원된 영상이 JPEG에서보다 좋은 화질을 나타내었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권8호
/
pp.2333-2345
/
2024
Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is required to identify wrinkled regions. Existing deep learning-based methods have difficulty segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by manually annotating fine wrinkles across the entire face. We then extract only the skin region from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ model using both dice loss and focal loss to alleviate the class imbalance problem. To validate the effectiveness of the proposed method, we conduct comprehensive experiments using our facial wrinkle dataset. The experimental results showed that the proposed method was superior to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.