다중 스케일 영상 분할은 영상 스타일링과 의료진단과 같은 여러 응용에서 매우 중요하다. 이 논문은 다중 스케일 구조를 확보하며 안정적이고 효율적인 MSER에 기반을 둔 새로운 알고리즘을 제안한다. 이 알고리즘은 영상에서 MSER를 수집한 후, 이것들을 특정한 순서대로 영상에 다시 그려 넣음으로써 영상을 분할한다. 영상 경계를 평활화하고 잡음을 제거하기 위한 계층적 모폴로지 연산을 제안한다. 알고리즘의 다중 스케일 특성을 보이기 위해, 여러 종류의 상세 단계 제어의 효과를 영상 스타일링에 적용한다. 제안한 기법은 이러한 효과를 시간이 많이 걸리는 다중 가우시언 평활화없이 수행한다. 분할 품질과 계산 시간 측면에서 민쉬프트-기반 Edison 시스템과 비교 결과를 제시한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권9호
/
pp.4386-4404
/
2016
Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.
Watershed 알고리듬을 통해 에지 기반과 영역 기반 기법을 결합한 하이브리드 영상 분할 알고리듬을 제안하였다. 먼저 minimax flow와 결합된 평균 곡률 확산을 이용하여 에지를 보존하면서 잡음을 제거를 수행한다. 영상을 watershed 알고리듬을 이용하여 분할한 후에 RAG (Region Adjacency Graph)을 사용하여 분할된 영역들간의 관계를 분석한다. RAG의 그래프 노드와 에지 비용은 분할된 영역과 두 인접한 영역사이의 상이함을 나타낸다. 최소 비용의 RAG의 에지를 찾아 가장 유사한 영역 쌍이 결정되면 두 영역은 서로 합치고 RAG은 갱신된다. 제안한 방법을 통해서 잡음을 효과적으로 감소시키고 한 화소 두께의, 닫힌 경계선을 획득할 수 있었다.
인체에 대한 표준데이터를 사용하지 않고 실제 한국인의 의료 영상 데이터를 사용하여 인체 모델을 만들고자 하였다. 먼저 CT와 MRI를 통해 획득한 인체의 의료영상에 대한 특징을 분석하였다. 인체의 해부학적인 구성요소에 대해 CT는 gray level로 MR 영상은 펄스시퀀스 별로 분석하여 특징을 추출하였다. 해부학적 구성요소의 특징을 바탕으로 인체 각 부위별로 영상을 얻기 위해 CT와 MR 영상에 대해 영상분할을 수행하였다. 인체의 부위 중 특히 인체의 네 가지 인체 역학적 구조물인 골조직, 근육, 인대, 건 부위를 CT와 MR 영상을 이용하여 구별하였다. 이미지 분할 방법에는 일반적으로 많이 사용되고 있는 경계선 검출(Edge detection), 영역 선택(Region Growing), 문턱치(Intensity Threshold) 방법 등을 선택하여 인체별로 가장 적합한 알고리듬을 적용시켰다. Head/Neck 부위에 대한 영상 분할 결과를 인체 역학적 구성요소별로 3차원 영상으로 재구성하였다.
본 논문은 비디오 영상에서 움직이는 물체를 분할하는 방법을 제안한다. 물체들의 크기가 작거나 서로 겹쳐있을 경우(occlusion), 또는 잡음이 많은 경우에도 안정적인 이 방법은 움직임 검출(motion detection)과 움직임 분할(motion segmentation) 두 단계로 구성되어 있다. 움직임 검출을 하기 위하여 인접 영상간의 차영상(difference image) 분석을 통해 움직임이 있는 부분을 추출하며, 이때 적응적 임계치 방법을 이용하여 빛의 변화나 노이즈가 포함된 환경에서도 안정적으로 추출한다. 움직임 분할 단계에서는 움직임이 검출된 부분을 초기영역으로 분할 한 뒤, 이 영역들의 모션정보에 따라 이웃 한 영역들을 병합함으로써 독립적으로 움직이는 물체를 분할한다. 이러한 방법은 검출된 영역에 대해서만 움직임 분할을 함으로 많은 계산효과를 얻을 수 있으며 실제 도로영상에서 제안된 방법을 실험해본 결과 비디오 감시시스템에 적합함을 알 수 있었다.
본 연구는 정지장면의 연속영상간 각 픽셀위치에서 일어나는 통계적 특성을 활용하여 영상을 분할하는 기법을 제안한다. 공간정보의 획득과 분석에서 디지털 영상 처리 기법의 활용은 아주 중요한 의미를 가진다. 특히 디지털 영상의 영역 구분을 위해 다양한 영상 분할(image segmentation) 기법들이 활용되고 있다. 본 연구에서는 선행 연구한 연속프레임 영상의 분광학적 특성 분석의 결과를 바탕으로 연속 프레임 간 Randomness를 활용한 이미지 분할 방법을 제안하였다. 우선 연속 프레임 간 각 화소에 통계학적인 분석 방법을 적용하여 각 화소의 평균과 표준편차 값을 구하고, 이를 통하여 대상 영상에서 가장 신뢰할 만한 화소들을 찾아 씨앗 점(seed point)을 결정하였다. 그리고 이 씨앗 점들을 시작으로 이웃 화소 간 T-test를 실시하였으며, 이를 기반으로 영역 성장(region growing)의 개념을 적용하여 영상을 분할 할 수 있는 기법을 연구하였다. 제안방식의 성능을 검증하기 위하여 실험을 통하여 기존의 방식과 비교분석을 수행하였다. 이러한 실험의 결과 영상분할에서 영상의 단일 프레임을 활용한 것보다 연속 프레임을 활용한 경우가 유리함을 확인 할 수 있었다.
경사 영상을 사용하는 워터쉐드에서는 영상 내의 잡음이 직접 국부적 최소 점들로 표현되어 영상의 과분할을 초래하게 된다. 특히 분할되어야 할 영역들의 경계에 대한 기울기 크기는 영역 분할의 정확성에 영향을 주어 전체 분할 성능을 좌우할 수 있다. 그러므로 본 논문에서는 기울기 크기를 결정하기 전에 영역들에 대한 경계의 선명도를 보존하면서 잡음을 제거함으로써 영상의 과분할을 줄일 수 있는 ATMF(Adaptive Trimmed Mean Filter)의 적용을 제안하였다.
Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.
International journal of advanced smart convergence
/
제7권4호
/
pp.108-113
/
2018
In this study, we introduce a new image gradient computation based on understanding of image generation. Most images consist of groups of pixels with similar color information because the images are generally obtained by taking a picture of the real world. The general gradient operator for an image compares only the neighboring pixels and cannot obtain information about a wide area, and there is a risk of falling into a local minimum problem. Therefore, it is necessary to attempt to introduce the gradient operator of the interval concept. We present a bow-tie gradient by color values of pixels on bow-tie region of a given pixel. To confirm the superiority of our study, we applied our bow-tie gradient to image segmentation algorithms for various images.
본 논문에서는, 영역 기반 영상 검색 시스템인 FRIP(Finding Region In the Pictures)을 제안한다. 이 시스템은 크게 색상과 방향성 질감 성분을 결합하는 굳건한 영상 분할 알고리즘과, 분할된 각 영역으로부터 특징 정보들을 추출하고 검색하는 3개의 알고리즘을 포함하고 있다. 영역 분할을 위해서, 영상으로부터 확장 및 이동된 색상 좌표계와, 방향성 질감 성분을 추출하여, 본 시스템에서 제안하는 원형필터에 적용시킨다. 원형 필터에 의해, 영역의 경계선이 자연스럽게 유지 될 수 있고, 또한 일반적인 영역 병합 알고리즘에 의해 병합되지 않던 의미 없는 줄무늬나 작은 점 영역들도 몸체 영역으로 병합 될 수 있다. 영상을 분할한 후에, 효율적인 저장 공간의 관리와 특징 정보 계산 시간을 줄이기 위하여 각 영역으로부터 최적의 특징 정보만을 추출하고 이것을 색인화 하여 데이타베이스에 저장하고 검색에 사용한다. 사용자 인터페이스를 위해서는, 영역의 '색상', '크기', '모양', '위치'와 같은 4개의 질의 조건을 주고, 사용자의 요구에 따라 정합 점수를 계산한 뒤, 그 점수에 따라 상위 검색 결과를 보여 주도록 설계되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.