• 제목/요약/키워드: Region-based segmentation

검색결과 558건 처리시간 0.032초

MSER을 이용한 다중 스케일 영상 분할과 응용 (Multi-scale Image Segmentation Using MSER and its Application)

  • 이진선;오일석
    • 한국콘텐츠학회논문지
    • /
    • 제14권3호
    • /
    • pp.11-21
    • /
    • 2014
  • 다중 스케일 영상 분할은 영상 스타일링과 의료진단과 같은 여러 응용에서 매우 중요하다. 이 논문은 다중 스케일 구조를 확보하며 안정적이고 효율적인 MSER에 기반을 둔 새로운 알고리즘을 제안한다. 이 알고리즘은 영상에서 MSER를 수집한 후, 이것들을 특정한 순서대로 영상에 다시 그려 넣음으로써 영상을 분할한다. 영상 경계를 평활화하고 잡음을 제거하기 위한 계층적 모폴로지 연산을 제안한다. 알고리즘의 다중 스케일 특성을 보이기 위해, 여러 종류의 상세 단계 제어의 효과를 영상 스타일링에 적용한다. 제안한 기법은 이러한 효과를 시간이 많이 걸리는 다중 가우시언 평활화없이 수행한다. 분할 품질과 계산 시간 측면에서 민쉬프트-기반 Edison 시스템과 비교 결과를 제시한다.

Salient Object Detection via Adaptive Region Merging

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4386-4404
    • /
    • 2016
  • Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.

Hybrid 알고리듬을 이용한 원격탐사영상의 분할 (Remote Sensing Image Segmentation by a Hybrid Algorithm)

  • 예철수;이쾌희
    • 대한원격탐사학회지
    • /
    • 제18권2호
    • /
    • pp.107-116
    • /
    • 2002
  • Watershed 알고리듬을 통해 에지 기반과 영역 기반 기법을 결합한 하이브리드 영상 분할 알고리듬을 제안하였다. 먼저 minimax flow와 결합된 평균 곡률 확산을 이용하여 에지를 보존하면서 잡음을 제거를 수행한다. 영상을 watershed 알고리듬을 이용하여 분할한 후에 RAG (Region Adjacency Graph)을 사용하여 분할된 영역들간의 관계를 분석한다. RAG의 그래프 노드와 에지 비용은 분할된 영역과 두 인접한 영역사이의 상이함을 나타낸다. 최소 비용의 RAG의 에지를 찾아 가장 유사한 영역 쌍이 결정되면 두 영역은 서로 합치고 RAG은 갱신된다. 제안한 방법을 통해서 잡음을 효과적으로 감소시키고 한 화소 두께의, 닫힌 경계선을 획득할 수 있었다.

의료 영상을 이용한 인체 역학적 구조물 특징 추출 및 영상 분할 (Feature Extraction and Image Segmentation of Mechanical Structures from Human Medical Images)

  • 호동수;김성현;김도일;서태석;최보영;김의녕;이진희;이형구
    • 한국의학물리학회지:의학물리
    • /
    • 제15권2호
    • /
    • pp.112-119
    • /
    • 2004
  • 인체에 대한 표준데이터를 사용하지 않고 실제 한국인의 의료 영상 데이터를 사용하여 인체 모델을 만들고자 하였다. 먼저 CT와 MRI를 통해 획득한 인체의 의료영상에 대한 특징을 분석하였다. 인체의 해부학적인 구성요소에 대해 CT는 gray level로 MR 영상은 펄스시퀀스 별로 분석하여 특징을 추출하였다. 해부학적 구성요소의 특징을 바탕으로 인체 각 부위별로 영상을 얻기 위해 CT와 MR 영상에 대해 영상분할을 수행하였다. 인체의 부위 중 특히 인체의 네 가지 인체 역학적 구조물인 골조직, 근육, 인대, 건 부위를 CT와 MR 영상을 이용하여 구별하였다. 이미지 분할 방법에는 일반적으로 많이 사용되고 있는 경계선 검출(Edge detection), 영역 선택(Region Growing), 문턱치(Intensity Threshold) 방법 등을 선택하여 인체별로 가장 적합한 알고리듬을 적용시켰다. Head/Neck 부위에 대한 영상 분할 결과를 인체 역학적 구성요소별로 3차원 영상으로 재구성하였다.

  • PDF

비디오 감시시스템을 위한 영역 기반의 움직이는 물체 분할 (Region-Based Moving Object Segmentation for Video Monitoring System)

  • 이경미;김종배;이창우;김항준
    • 전자공학회논문지CI
    • /
    • 제40권1호
    • /
    • pp.30-38
    • /
    • 2003
  • 본 논문은 비디오 영상에서 움직이는 물체를 분할하는 방법을 제안한다. 물체들의 크기가 작거나 서로 겹쳐있을 경우(occlusion), 또는 잡음이 많은 경우에도 안정적인 이 방법은 움직임 검출(motion detection)과 움직임 분할(motion segmentation) 두 단계로 구성되어 있다. 움직임 검출을 하기 위하여 인접 영상간의 차영상(difference image) 분석을 통해 움직임이 있는 부분을 추출하며, 이때 적응적 임계치 방법을 이용하여 빛의 변화나 노이즈가 포함된 환경에서도 안정적으로 추출한다. 움직임 분할 단계에서는 움직임이 검출된 부분을 초기영역으로 분할 한 뒤, 이 영역들의 모션정보에 따라 이웃 한 영역들을 병합함으로써 독립적으로 움직이는 물체를 분할한다. 이러한 방법은 검출된 영역에 대해서만 움직임 분할을 함으로 많은 계산효과를 얻을 수 있으며 실제 도로영상에서 제안된 방법을 실험해본 결과 비디오 감시시스템에 적합함을 알 수 있었다.

정지장면의 연속 프레임 영상 간 통계에 기반한 영상분할 (Image Segmentation based on Statistics of Sequential Frame Imagery of a Static Scene)

  • 서수영;고인철
    • Spatial Information Research
    • /
    • 제18권3호
    • /
    • pp.73-83
    • /
    • 2010
  • 본 연구는 정지장면의 연속영상간 각 픽셀위치에서 일어나는 통계적 특성을 활용하여 영상을 분할하는 기법을 제안한다. 공간정보의 획득과 분석에서 디지털 영상 처리 기법의 활용은 아주 중요한 의미를 가진다. 특히 디지털 영상의 영역 구분을 위해 다양한 영상 분할(image segmentation) 기법들이 활용되고 있다. 본 연구에서는 선행 연구한 연속프레임 영상의 분광학적 특성 분석의 결과를 바탕으로 연속 프레임 간 Randomness를 활용한 이미지 분할 방법을 제안하였다. 우선 연속 프레임 간 각 화소에 통계학적인 분석 방법을 적용하여 각 화소의 평균과 표준편차 값을 구하고, 이를 통하여 대상 영상에서 가장 신뢰할 만한 화소들을 찾아 씨앗 점(seed point)을 결정하였다. 그리고 이 씨앗 점들을 시작으로 이웃 화소 간 T-test를 실시하였으며, 이를 기반으로 영역 성장(region growing)의 개념을 적용하여 영상을 분할 할 수 있는 기법을 연구하였다. 제안방식의 성능을 검증하기 위하여 실험을 통하여 기존의 방식과 비교분석을 수행하였다. 이러한 실험의 결과 영상분할에서 영상의 단일 프레임을 활용한 것보다 연속 프레임을 활용한 경우가 유리함을 확인 할 수 있었다.

ATMF를 이용한 영상의 과분할 방지에 관한 연구 (A Study of Resolving the Over Segmentation in Image using ATMF)

  • 박형근
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권5호
    • /
    • pp.735-740
    • /
    • 2005
  • 경사 영상을 사용하는 워터쉐드에서는 영상 내의 잡음이 직접 국부적 최소 점들로 표현되어 영상의 과분할을 초래하게 된다. 특히 분할되어야 할 영역들의 경계에 대한 기울기 크기는 영역 분할의 정확성에 영향을 주어 전체 분할 성능을 좌우할 수 있다. 그러므로 본 논문에서는 기울기 크기를 결정하기 전에 영역들에 대한 경계의 선명도를 보존하면서 잡음을 제거함으로써 영상의 과분할을 줄일 수 있는 ATMF(Adaptive Trimmed Mean Filter)의 적용을 제안하였다.

  • PDF

A Fast Lower Extremity Vessel Segmentation Method for Large CT Data Sets Using 3-Dimensional Seeded Region Growing and Branch Classification

  • Kim, Dong-Sung
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권5호
    • /
    • pp.348-354
    • /
    • 2008
  • Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.

Region-Based Gradient and Its Application to Image Segmentation

  • Kim, Hyoung Seok
    • International journal of advanced smart convergence
    • /
    • 제7권4호
    • /
    • pp.108-113
    • /
    • 2018
  • In this study, we introduce a new image gradient computation based on understanding of image generation. Most images consist of groups of pixels with similar color information because the images are generally obtained by taking a picture of the real world. The general gradient operator for an image compares only the neighboring pixels and cannot obtain information about a wide area, and there is a risk of falling into a local minimum problem. Therefore, it is necessary to attempt to introduce the gradient operator of the interval concept. We present a bow-tie gradient by color values of pixels on bow-tie region of a given pixel. To confirm the superiority of our study, we applied our bow-tie gradient to image segmentation algorithms for various images.

영역기반 영상 검색을 위한 FRIP 시스템 (FRIP System for Region-based Image Retrieval)

  • 고병철;이해성;변해란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권3호
    • /
    • pp.260-272
    • /
    • 2001
  • 본 논문에서는, 영역 기반 영상 검색 시스템인 FRIP(Finding Region In the Pictures)을 제안한다. 이 시스템은 크게 색상과 방향성 질감 성분을 결합하는 굳건한 영상 분할 알고리즘과, 분할된 각 영역으로부터 특징 정보들을 추출하고 검색하는 3개의 알고리즘을 포함하고 있다. 영역 분할을 위해서, 영상으로부터 확장 및 이동된 색상 좌표계와, 방향성 질감 성분을 추출하여, 본 시스템에서 제안하는 원형필터에 적용시킨다. 원형 필터에 의해, 영역의 경계선이 자연스럽게 유지 될 수 있고, 또한 일반적인 영역 병합 알고리즘에 의해 병합되지 않던 의미 없는 줄무늬나 작은 점 영역들도 몸체 영역으로 병합 될 수 있다. 영상을 분할한 후에, 효율적인 저장 공간의 관리와 특징 정보 계산 시간을 줄이기 위하여 각 영역으로부터 최적의 특징 정보만을 추출하고 이것을 색인화 하여 데이타베이스에 저장하고 검색에 사용한다. 사용자 인터페이스를 위해서는, 영역의 '색상', '크기', '모양', '위치'와 같은 4개의 질의 조건을 주고, 사용자의 요구에 따라 정합 점수를 계산한 뒤, 그 점수에 따라 상위 검색 결과를 보여 주도록 설계되었다.

  • PDF