• Title/Summary/Keyword: Region-based image processing

Search Result 523, Processing Time 0.026 seconds

A Real Time Processing Technique for Content-Based Image Retargeting (컨텐츠 기반 영상 리타겟팅을 위한 실시간 처리 기법)

  • Lee, Kang-Hee;Yoo, Jae-Wook;Park, Dae-Hyun;Kim, Yoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • In this paper, we propose a new real time image retargeting method which preserves the contents of an image. Since the conventional seam carving which is the well-known content-based image retargeting technology uses the dynamic programming method, the repetitive update procedure of the accumulation minimum energy map is absolutely needed. The energy map update procedure cannot avoid the processing time delay because of many operations by the image full-searching. The proposed method calculates the diffusion region of each seam candidates in the accumulation minimum energy map in order to reduce the update processing time. By using the diffusion region, several seams are extracted at the same time and the update number of accumulation energy map is reduced. Therefore, although the fast processing is possible, the quality of an image can be analogously maintained with an existing method. The experimental results show that the proposed method can preserve the contents of an image and adjust the image size on a real-time.

Study on image-based flock density evaluation of broiler chicks (영상기반 축사 내 육계 검출 및 밀집도 평가 연구)

  • Lee, Dae-Hyun;Kim, Ae-Kyung;Choi, Chang-Hyun;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.373-379
    • /
    • 2019
  • In this study, image-based flock monitoring and density evaluation were conducted for broiler chicks welfare. Image data were captured by using a mono camera and region of broiler chicks in the image was detected using converting to HSV color model, thresholding, and clustering with filtering. The results show that region detection was performed with 5% relative error and 0.81 IoU on average. The detected region was corrected to the actual region by projection into ground using coordinate transformation between camera and real-world. The flock density of broiler chicks was estimated using the corrected actual region, and it was observed with an average of 80%. The developed algorithm can be applied to the broiler chicks house through enhancing accuracy of region detection and low-cost system configuration.

Hierarchical Graph Based Segmentation and Consensus based Human Tracking Technique

  • Ramachandra, Sunitha Madasi;Jayanna, Haradagere Siddaramaiah;Ramegowda, Ramegowda
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.67-90
    • /
    • 2019
  • Accurate detection, tracking and analysis of human movement using robots and other visual surveillance systems is still a challenge. Efforts are on to make the system robust against constraints such as variation in shape, size, pose and occlusion. Traditional methods of detection used the sliding window approach which involved scanning of various sizes of windows across an image. This paper concentrates on employing a state-of-the-art, hierarchical graph based method for segmentation. It has two stages: part level segmentation for color-consistent segments and object level segmentation for category-consistent regions. The tracking phase is achieved by employing SIFT keypoint descriptor based technique in a combined matching and tracking scheme with validation phase. Localization of human region in each frame is performed by keypoints by casting votes for the center of the human detected region. As it is difficult to avoid incorrect keypoints, a consensus-based framework is used to detect voting behavior. The designed methodology is tested on the video sequences having 3 to 4 persons.

Artificial Neural Network Method Based on Convolution to Efficiently Extract the DoF Embodied in Images

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • In this paper, we propose a method to find the DoF(Depth of field) that is blurred in an image by focusing and out-focusing the camera through a efficient convolutional neural network. Our approach uses the RGB channel-based cross-correlation filter to efficiently classify the DoF region from the image and build data for learning in the convolutional neural network. A data pair of the training data is established between the image and the DoF weighted map. Data used for learning uses DoF weight maps extracted by cross-correlation filters, and uses the result of applying the smoothing process to increase the convergence rate in the network learning stage. The DoF weighted image obtained as the test result stably finds the DoF region in the input image. As a result, the proposed method can be used in various places such as NPR(Non-photorealistic rendering) rendering and object detection by using the DoF area as the user's ROI(Region of interest).

Image Retrieval Method Based on IPDSH and SRIP

  • Zhang, Xu;Guo, Baolong;Yan, Yunyi;Sun, Wei;Yi, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1676-1689
    • /
    • 2014
  • At present, the Content-Based Image Retrieval (CBIR) system has become a hot research topic in the computer vision field. In the CBIR system, the accurate extractions of low-level features can reduce the gaps between high-level semantics and improve retrieval precision. This paper puts forward a new retrieval method aiming at the problems of high computational complexities and low precision of global feature extraction algorithms. The establishment of the new retrieval method is on the basis of the SIFT and Harris (APISH) algorithm, and the salient region of interest points (SRIP) algorithm to satisfy users' interests in the specific targets of images. In the first place, by using the IPDSH and SRIP algorithms, we tested stable interest points and found salient regions. The interest points in the salient region were named as salient interest points. Secondary, we extracted the pseudo-Zernike moments of the salient interest points' neighborhood as the feature vectors. Finally, we calculated the similarities between query and database images. Finally, We conducted this experiment based on the Caltech-101 database. By studying the experiment, the results have shown that this new retrieval method can decrease the interference of unstable interest points in the regions of non-interests and improve the ratios of accuracy and recall.

AAW-based Cell Image Segmentation Method (적응적 관심윈도우 기반의 세포영상 분할 기법)

  • Seo, Mi-Suk;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.99-106
    • /
    • 2007
  • In this paper, we present an AAW(Adaptive Attention Window) based cell image segmentation method. For semantic AAW detection we create an initial Attention Window by using a luminance map. Then the initial AW is reduced to the optimal size of the real ROI(Region of Interest) by using a quad tree segmentation. The purpose of AAW is to remove the background and to reduce the amount of processing time for segmenting ROIs. Experimental results show that the proposed method segments one or more ROIs efficiently and gives the similar segmentation result as compared with the human perception.

A Reduction Method of Over-Segmented Regions at Image Segmentation based on Homogeneity Threshold (동질성 문턱 값 기반 영상분할에서 과분할 영역 축소 방법)

  • Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • In this paper, we propose a novel method to solve the problem of excessive segmentation out of the method of segmenting regions from an image using Homogeneity Threshold($H_T$). The algorithm of the previous image segmentation based on $H_T$ was carried out region growth by using only the center pixel of selected window. Therefore it was caused resulting in excessive segmented regions. However, before carrying region growth, the proposed method first of all finds out whether the selected window is homogeneity or not. Subsequently, if the selected window is homogeneity it carries out region growth using the total pixels of selected window. But if the selected window is not homogeneity, it carries out region growth using only the center pixel of selected window. So, the method can reduce remarkably the number of excessive segmented regions of image segmentation based on $H_T$. In order to show the validity of the proposed method, we carried out multiple experiments to compare the proposed method with previous method in same environment and conditions. As the results, the proposed method can reduce the number of segmented regions above 40% and doesn't make any difference in the quality of visual image when we compare with previous method. Especially, when we compare the image united with regions of descending order by size of segmented regions in experimentation with the previous method, even though the united image has regions more than 1,000, we can't recognize what the image means. However, in the proposed method, even though image is united by segmented regions less than 10, we can recognize what the image is. For these reason, we expect that the proposed method will be utilized in various fields, such as the extraction of objects, the retrieval of informations from the image, research for anatomy, biology, image visualization, and animation and so on.

The Endocardial Boundary Detection based on Statistical Charact'eristics of Echocardiographic Image (초음파 영상의 통계적 특성에 근거한 심내벽 윤곽선 검출)

  • Won, Chul-Ho;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.365-372
    • /
    • 1996
  • The researches to acquire diagnostic parameters from ultrasonic images are advanced with the progress of the digital image processing technique. Especially, the detection of endocardial boundary is very important in ultrasonic images, because endocardial boundary is used as a clinical parameter to estimate both the cardiac area and the variation of cardiac volume. Various methods to detect cardiac boundary are proposed, but these are insufficient to detect boundary. In this paper, an algorithm that detects the endocardial boundary, expanding the cavity region from the center using statistical information, is proposed The value of mean and sty:nd, wd deviation in cavity region is lower than those in muscle re- gion. Therefore, if we define the multiplication of mean and standard deviation as homogeneous coefficient, it can lead to conclusion that the pixels with small variation of these coefficleno are cavity region, and extraction of endocardial boundary from cavity region is possible. The proposed method detected endocardial boundary more effectively than edge based or threshold based method and is robuster to noise than radial searching method that has high dependency for center position.

  • PDF

Adaptive Object-Region-Based Image Pre-Processing for a Noise Removal Algorithm

  • Ahn, Sangwoo;Park, Jongjoo;Luo, Linbo;Chong, Jongwha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3166-3179
    • /
    • 2013
  • A pre-processing system for adaptive noise removal is proposed based on the principle of identifying and filtering object regions and background regions. Human perception of images depends on bright, well-focused object regions; these regions can be treated with the best filters, while simpler filters can be applied to other regions to reduce overall computational complexity. In the proposed method, bright region segmentation is performed, followed by segmentation of object and background regions. Noise in dark, background, and object regions is then removed by the median, fast bilateral, and bilateral filters, respectively. Simulations show that the proposed algorithm is much faster than and performs nearly as well as the bilateral filter (which is considered a powerful noise removal algorithm); it reduces computation time by 19.4 % while reducing PSNR by only 1.57 % relative to bilateral filtering. Thus, the proposed algorithm remarkably reduces computation while maintaining accuracy.

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.