A Real Time Processing Technique for Content-Based Image Retargeting

컨텐츠 기반 영상 리타겟팅을 위한 실시간 처리 기법

  • Lee, Kang-Hee (Dept. of Computer and Communications Engineering, Kangwon National University) ;
  • Yoo, Jae-Wook (Dept. of Computer and Communications Engineering, Kangwon National University) ;
  • Park, Dae-Hyun (Dept. of Computer and Communications Engineering, Kangwon National University) ;
  • Kim, Yoon (Dept. of Computer and Communications Engineering, Kangwon National University)
  • 이강희 (강원대학교 컴퓨터정보통신공학과) ;
  • 유재욱 (강원대학교 컴퓨터정보통신공학과) ;
  • 박대현 (강원대학교 컴퓨터정보통신공학과) ;
  • 김윤 (강원대학교 컴퓨터정보통신공학과)
  • Received : 2011.01.12
  • Accepted : 2011.06.23
  • Published : 2011.09.25

Abstract

In this paper, we propose a new real time image retargeting method which preserves the contents of an image. Since the conventional seam carving which is the well-known content-based image retargeting technology uses the dynamic programming method, the repetitive update procedure of the accumulation minimum energy map is absolutely needed. The energy map update procedure cannot avoid the processing time delay because of many operations by the image full-searching. The proposed method calculates the diffusion region of each seam candidates in the accumulation minimum energy map in order to reduce the update processing time. By using the diffusion region, several seams are extracted at the same time and the update number of accumulation energy map is reduced. Therefore, although the fast processing is possible, the quality of an image can be analogously maintained with an existing method. The experimental results show that the proposed method can preserve the contents of an image and adjust the image size on a real-time.

본 논문에서는 영상이 가지는 컨텐츠를 보호하면서 영상의 크기를 실시간으로 변환하는 영상 리타겟팅 방법에 대하여 제안한다. 기존의 컨텐츠 기반의 영상 리타겟팅 기법인 seam carving은 영상의 크기 조절 시 다이나믹 프로그래밍(Dynamic Programming) 기법을 사용하기 때문에 반복적인 누적 최소 에너지 맵의 갱신 과정이 반드시 필요하다. 이 갱신 과정에서 전체 영상을 탐색해야 하므로 많은 연산량이 요구되며, 이로 인한 처리 시간 지연이 불가피하다. 제안하는 방법은 이러한 누적 최소 에너지 맵의 갱신으로 인한 처리 시간 지연을 개선하기 위하여, 우선 계산된 누적 최소 에너지 맵에서 seam이 될 수 있는 모든 후보들이 영향을 미치는 영역을 계산한다. 이 후보들의 영역을 이용하여 여러 개의 seam을 동시에 추출함으로써 누적 최소 에너지 맵의 갱신 횟수가 줄어들기 때문에, 전체 연산량이 줄어들어 빠른 처리가 가능하면서도 영상의 화질은 기존의 seam carving 기법과 비슷하게 유지할 수 있다. 실험 결과는 제안하는 방법이 영상이 가지고 있는 컨텐츠를 보존하면서 실시간으로 영상의 크기를 조절할 수 있음을 보여준다.

Keywords

References

  1. K. T. Gribbon and D. G. Bailey, "A Novel Approach to Real-time Bilinear Interpolation", Proc. Second IEEE International Workshop on Electronic Design, Test and Application, Perth, Australia, pp. 126, 2004.
  2. R. Keys, "Cubic convolution interpolation for digital image processing", IEEE Transactions on Acoustics Speech And Signal Processing, Vol. ASSP-29, No. 6, pp. 1153-1160, 1981.
  3. A. Santella and M. Agrawala and D. Decarlo and D. Salesin and M. Cohen, "Gaze-based interaction for semi-automatic photo cropping," ACM Human Factors in Computing Systems, pp. 771-780, 2006.
  4. F. Liu and M. Gleicher, "Automatic Image retargeting with fisheye-view warping," ACM Multimedia, pp. 153-164, Oct. 2005.
  5. S. Avidan and A. Shamir, "Seam Carving for Content-Aware Image Resizing," ACM Trans. on Graphics, Vol. 26, Issue 3, Jul. 2007.
  6. I. S. Amrutha and S. S. Shylaja and S. Natarajan and K. N. Balasubramanya Murthy, "A smart automatic thumbnail cropping based on attention driven regions of interest extraction", Proc. ICIS on Computational Attention and Applications, 2009.
  7. M. Nishiyama and T. Okabe and Y. Sato and I. Sato, "Sensation-based photo cropping", Proc. ACM on Multimedia, pp. 957-962, 2009.
  8. V. Setlur and S. Takagi and R. Raskar and M. Gleicher and B. Gooch, "Automatic Image retargeting," Proc. ACM, Vol. 154, pp. 59-68, 2005.
  9. C. Tao and J. Jia and H. Sun, "Active window oriented dynamic video retargeting," ICCV Proc. Workshop on Dynamical Vision, 2007.
  10. S. Cho and Y. Matsushita and S. Lee, "Image Retargeting with Importance Diffusion," KIISE, vol. 35, pp. 236-239, Jun. 2008.
  11. Y. Guo and F. Liu and J. Shi and Z. H. Zhou, "Image retargeting using mesh parametrization", IEEE Trans. on Multimedia, Vol. 11, No. 5, pp. 856-867, 2009. https://doi.org/10.1109/TMM.2009.2021781
  12. Y. S. Wang and C. L. Tai and O. Sorkine and T. Y. Lee, "Optimized scale-and-stretch for image resizing", ACM Trans. on Graphics, Vol. 25, No. 5, 2008.
  13. H. Liu and S. Jiang and Q. Huang and C. Xu and W. Gao, "Region-based visual attention analysis with its application in image browsing on small displays", Proc. of the 15th ACM international conference on Multimedia, pp. 305-308, 2007.
  14. A. Amini, S. Tehrani, and T. Weymouth, "Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints", Proc. Second international conference Computer Vision, Tarpon Springs, FL, 1988.
  15. A. A. Amini and T. E. Weymouth and R. C. Jain, "Using dynamic programming for solving variational problems in vision", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 12, No. 9, pp. 885-867, 1990.
  16. N. Otsu, "A threshold selection method from gray-level histogram", IEEE Transactions on System Man Cybernetics, Vol. SMC-9, No. 1, pp. 62-66, 1979.
  17. M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation", J. Electron. Imaging Vol. 13, No. 1, pp. 146-165, 2004.
  18. P. K. Sahoo, S. Soltani, A. K. C. Wong, "A survey of thresholding techniques", Comput. Vision, Graphics Image Processing, Vol. 41, No. 2, pp. 233-260, 1988. https://doi.org/10.1016/0734-189X(88)90022-9