• Title/Summary/Keyword: Region-based Image

Search Result 1,855, Processing Time 0.041 seconds

Motion estimation using regions

  • Sull, Sanghoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2333-2344
    • /
    • 1998
  • We present a two step approach for estimating the motionand sturcture parameters from region orrespondences in two frames. Given four or more region corresondences on the same planar surface, the motion and planar orientation parameters are first linearly estimated based on second-order approximation of the displacement field of the image plane. Then, using this linear estimate as an initial guess, a nonlinear estimate is obtained by iteratively minimizing an objective function using the exact experession of the displacement field. The objective function involves the centroids of corresponding regions and relationships among low-order moments. Through simulations, we show that the two-step region-based approach gives robust estimates. The performance of nonlinear region-based estimation is compared with that of linear region-based and point-based methods. Experimental results for two image pairs, on esynthetic and one real, ar epresented to show the practical applicability of our approach.

  • PDF

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

Region-Based Step-Response Extraction and PSF Estimation for Digital Auto-Focusing (영역기반 계단응답 추출 및 디지털자동초점을 위한 점확산함수 추정)

  • Park, Young-Uk;Kim, Dong-Gyun;Lee, Jin-Hee;Paik, Joon-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.827-828
    • /
    • 2008
  • Blur identification is the first and the most important step of restoring images. Edge region of the image usually conveys important information of blur parameters. In this paper we propose a region-based edge extraction method for estimating point-spread-function (PSF). As a result, the proposed method can detect the starting and the ending points of a step response, and provides the PSF parameters to the restoration process.

  • PDF

Hierarchical Image Segmentation Based on HVS Characteristic for Region-Based Very Low Bit Rate Coding (영역기반 초저속 부호화를 위한 인간 시각 체계에 기반한 계층적 영상 분할)

  • Song, Kun-Woen;Park, Young-Sik;Han, Kyu-Phil;Nam, Jae-Yeal;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.70-80
    • /
    • 1999
  • In this paper, a new hierarchical image segmentation algorithm based on human visual system(HVS) characteristic is proposed which can efficiently reduce and control transmission information quantity without the degradation of the subjective and objective image quality. It consists of image segmentation based on mathematical morphology and region merging considering HVS characteristic for the pairs of two adjacent regions at each level of the hierarchy. Image segmentation is composed of 3-level hierarchical structure. In the region merging structure of each level, we extract the pairs of two adjacent regions which human vision can't discriminate, and then merge them. The proposed region merging method extracts pairs of two neighbor regions to be merged and performs region merging according to merging priority based on HVS characteristics. The merging priority for each adjacent pair is determined by the proposed merging priority function(MPF). First of all, the highest priority pair is merged. The information control factor is used to regulate the transmission information at each level. The proposed segmentation algorithm can efficiently improve bottleneck problem caused by excessive contour information at region-based very low bit rate coding. And it shows that it is more flexible structure than that of conventional method. In experimental results, though PSNR and the subjective image quality by the proposed algorithm is similar to that of conventional method, the contour information quantity to be transmitted is reduced considerably. Therefore it is an efficient image segmentation algorithm for region-based very low bit rate coding.

  • PDF

Efficient Object-based Image Retrieval Method using Color Features from Salient Regions

  • An, Jaehyun;Lee, Sang Hwa;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.229-236
    • /
    • 2017
  • This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.

Backlit Region Detection Using Adaptively Partitioned Block and Fuzzy C-means Clustering for Backlit Image Enhancement (역광 영상 개선을 위한 퍼지 C-평균 분류기와 적응적 블록 분할을 사용한 역광 영역 검출)

  • Kim, Nahyun;Lee, Seungwon;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.124-132
    • /
    • 2014
  • In this paper, we present a novel backlit region detection and contrast enhancement method using fuzzy C-means clustering and adaptively partitioned block based contrast stretching. The proposed method separates an image into both dark backlit and bright background regions using adaptively partitioned blocks based on the optimal threshold value computed by fuzzy logic. The detected block-wise backlit region is refined using the guided filter for removing block artifacts. Contrast stretching algorithm is then applied to adaptively enhance the detected backlit region. Experimental results show that the proposed method can successfully detect the backlit region without a complicated segmentation algorithm and enhance the object information in the backlit region.

Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images (위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘)

  • Kim, Jeahee;Lee, Changu;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

TIN Based Geometric Correction with GCP

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.247-253
    • /
    • 2003
  • The mainly used technique to correct satellite images with geometric distortion is to develop a mathematical relationship between pixels on the image and corresponding points on the ground. Polynomial models with various transformations have been designed for defining the relationship between two coordinate systems. GCP based geometric correction has peformed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The Region with highly variant height is rectified with distortion on overall plane mapping. To consider locally variable region in satellite image, TIN-based rectification on a satellite image is proposed in this paper. This paper describes the relationship between GCP distribution and rectification model through experimental result and analysis about each rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

FRIP System for Region-based Image Retrieval (영역기반 영상 검색을 위한 FRIP 시스템)

  • Ko, Byoung-Chul;Lee, Hae-Sung;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.260-272
    • /
    • 2001
  • In this paper, we have designed a region-based image retrieval system, FRIP(Finding Region In the Pictures). This system includes a robust image segmentation scheme using color and texture direction and retrieval scheme based on features of each region. For image segmentation, by using a circular filter, we can protect the boundary of round object and merge stripes or spots of objects into body region. It also combines scaled and shifted color coordinate and texture direction. After image segmentation, in order to improve the storage management effectively and reduce the computation time, we extract compact features from each region and store as index. For user interface, by the user specified constraints such as color-care / don't care. scale-care / dont care, shape-care / dont care and location-care / dont care, the overal/ matching score is estimated and the top Ie nearest images are reported in the ascending order of the final score.

  • PDF

Content-based Image Retrieval using Feature Extraction in Wavelet Transform Domain (웨이브릿 변환 영역에서 특징추출을 이용한 내용기반 영상 검색)

  • 최인호;이상훈
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.415-425
    • /
    • 2002
  • In this paper, we present a content-based image retrieval method which is based on the feature extraction in the wavelet transform domain. In order to overcome the drawbacks of the feature vector making up methods which use the global wavelet coefficients in subbands, we utilize the energy value of wavelet coefficients, and the shape-based retrieval of objects is processed by moment which is invariant in translation, scaling, rotation of the objects The proposed methods reduce feature vector size, and make progress performance of classification retrieval which provides fast retrievals times. To offer the abilities of region-based image retrieval, we discussed the image segmentation method which can reduce the effect of an irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The region-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector.

  • PDF