• Title/Summary/Keyword: Region-based CNN

Search Result 78, Processing Time 0.022 seconds

Centroid Neural Network with Bhattacharyya Kernel (Bhattacharyya 커널을 적용한 Centroid Neural Network)

  • Lee, Song-Jae;Park, Dong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.861-866
    • /
    • 2007
  • A clustering algorithm for Gaussian Probability Distribution Function (GPDF) data called Centroid Neural Network with a Bhattacharyya Kernel (BK-CNN) is proposed in this paper. The proposed BK-CNN is based on the unsupervised competitive Centroid Neural Network (CNN) and employs a kernel method for data projection. The kernel method adopted in the proposed BK-CNN is used to project data from the low dimensional input feature space into higher dimensional feature space so as the nonlinear problems associated with input space can be solved linearly in the feature space. In order to cluster the GPDF data, the Bhattacharyya kernel is used to measure the distance between two probability distributions for data projection. With the incorporation of the kernel method, the proposed BK-CNN is capable of dealing with nonlinear separation boundaries and can successfully allocate more code vector in the region that GPDF data are densely distributed. When applied to GPDF data in an image classification probleml, the experiment results show that the proposed BK-CNN algorithm gives 1.7%-4.3% improvements in average classification accuracy over other conventional algorithm such as k-means, Self-Organizing Map (SOM) and CNN algorithms with a Bhattacharyya distance, classed as Bk-Means, B-SOM, B-CNN algorithms.

A New Bank-card Number Identification Algorithm Based on Convolutional Deep Learning Neural Network

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.

Evaluation of Building Detection from Aerial Images Using Region-based Convolutional Neural Network for Deep Learning (딥러닝을 위한 영역기반 합성곱 신경망에 의한 항공영상에서 건물탐지 평가)

  • Lee, Dae Geon;Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.469-481
    • /
    • 2018
  • DL (Deep Learning) is getting popular in various fields to implement artificial intelligence that resembles human learning and cognition. DL based on complicate structure of the ANN (Artificial Neural Network) requires computing power and computation cost. Variety of DL models with improved performance have been developed with powerful computer specification. The main purpose of this paper is to detect buildings from aerial images and evaluate performance of Mask R-CNN (Region-based Convolutional Neural Network) developed by FAIR (Facebook AI Research) team recently. Mask R-CNN is a R-CNN that is evaluated to be one of the best ANN models in terms of performance for semantic segmentation with pixel-level accuracy. The performance of the DL models is determined by training ability as well as architecture of the ANN. In this paper, we characteristics of the Mask R-CNN with various types of the images and evaluate possibility of the generalization which is the ultimate goal of the DL. As for future study, it is expected that reliability and generalization of DL will be improved by using a variety of spatial information data for training of the DL models.

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

Cascade CNN with CPU-FPGA Architecture for Real-time Face Detection (실시간 얼굴 검출을 위한 Cascade CNN의 CPU-FPGA 구조 연구)

  • Nam, Kwang-Min;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.388-396
    • /
    • 2017
  • Since there are many variables such as various poses, illuminations and occlusions in a face detection problem, a high performance detection system is required. Although CNN is excellent in image classification, CNN operatioin requires high-performance hardware resources. But low cost low power environments are essential for small and mobile systems. So in this paper, the CPU-FPGA integrated system is designed based on 3-stage cascade CNN architecture using small size FPGA. Adaptive Region of Interest (ROI) is applied to reduce the number of CNN operations using face information of the previous frame. We use a Field Programmable Gate Array(FPGA) to accelerate the CNN computations. The accelerator reads multiple featuremap at once on the FPGA and performs a Multiply-Accumulate (MAC) operation in parallel for convolution operation. The system is implemented on Altera Cyclone V FPGA in which ARM Cortex A-9 and on-chip SRAM are embedded. The system runs at 30FPS with HD resolution input images. The CPU-FPGA integrated system showed 8.5 times of the power efficiency compared to systems using CPU only.

Recognition of Car Manufacturers using Faster R-CNN and Perspective Transformation

  • Ansari, Israfil;Lee, Yeunghak;Jeong, Yunju;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.888-896
    • /
    • 2018
  • In this paper, we report detection and recognition of vehicle logo from images captured from street CCTV. Image data includes both the front and rear view of the vehicles. The proposed method is a two-step process which combines image preprocessing and faster region-based convolutional neural network (R-CNN) for logo recognition. Without preprocessing, faster R-CNN accuracy is high only if the image quality is good. The proposed system is focusing on street CCTV camera where image quality is different from a front facing camera. Using perspective transformation the top view images are transformed into front view images. In this system, the detection and accuracy are much higher as compared to the existing algorithm. As a result of the experiment, on day data the detection and recognition rate is improved by 2% and night data, detection rate improved by 14%.

Design of Pet Behavior Classification Method Based On DeepLabCut and Mask R-CNN (DeepLabCut과 Mask R-CNN 기반 반려동물 행동 분류 설계)

  • Kwon, Juyeong;Shin, Minchan;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.927-929
    • /
    • 2021
  • 최근 펫팸족(Pet-Family)과 같이 반려동물을 가족처럼 생각하는 가구가 증가하면서 반려동물 시장이 크게 성장하고 있다. 이러한 이유로 본 논문에서는 반려동물의 객체 식별을 통한 객체 분할과 신체 좌표추정에 기반을 둔 반려동물의 행동 분류 방법을 제안한다. 이 방법은 CCTV를 통해 반려동물 영상 데이터를 수집한다. 수집된 영상 데이터는 반려동물의 인스턴스 분할을 위해 Mask R-CNN(Region Convolutional Neural Networks) 모델을 적용하고, DeepLabCut 모델을 통해 추정된 신체 좌푯값을 도출한다. 이 결과로 도출된 영상 데이터와 추정된 신체 좌표 값은 CNN(Convolutional Neural Networks)-LSTM(Long Short-Term Memory) 모델을 적용하여 행동을 분류한다. 본 모델을 바탕으로 행동을 분석 및 분류하여, 반려동물의 위험 상황과 돌발 행동에 대한 올바른 대처를 제공할 수 있는 기반을 제공할 것이라 기대한다.

Improved CNN Algorithm for Object Detection in Large Images

  • Yang, Seong Bong;Lee, Soo Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Conventional Convolutional Neural Network(CNN) algorithms have limitations in detecting small objects in large image. In this paper, we propose an improved model which is based on Region Of Interest(ROI) selection and image dividing technique. We prepared YOLOv3 / Faster R-CNN algorithms which are transfer-learned by airfield and aircraft datasets. Also we prepared large images for testing. In order to verify our model, we selected airfield area from large image as ROI first and divided it in two power n orders. Then we compared the aircraft detection rates by number of divisions. We could get the best size of divided image pieces for efficient small object detection derived from the comparison of aircraft detection rates. As a result, we could verify that the improved CNN algorithm can detect small object in large images.

Image based Fire Detection using Convolutional Neural Network (CNN을 활용한 영상 기반의 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1649-1656
    • /
    • 2016
  • Performance of the existing sensor-based fire detection system is limited according to factors in the environment surrounding the sensor. A number of image-based fire detection systems were introduced in order to solve these problem. But such a system can generate a false alarm for objects similar in appearance to fire due to algorithm that directly defines the characteristics of a flame. Also fir detection systems using movement between video flames cannot operate correctly as intended in an environment in which the network is unstable. In this paper, we propose an image-based fire detection method using CNN (Convolutional Neural Network). In this method, firstly we extract fire candidate region using color information from video frame input and then detect fire using trained CNN. Also, we show that the performance is significantly improved compared to the detection rate and missing rate found in previous studies.

Implementation of Rotating Invariant Multi Object Detection System Applying MI-FL Based on SSD Algorithm (SSD 알고리즘 기반 MI-FL을 적용한 회전 불변의 다중 객체 검출 시스템 구현)

  • Park, Su-Bin;Lim, Hye-Youn;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2019
  • Recently, object detection technology based on CNN has been actively studied. Object detection technology is used as an important technology in autonomous vehicles, intelligent image analysis, and so on. In this paper, we propose a rotation change robust object detection system by applying MI-FL (Moment Invariant-Feature Layer) to SSD (Single Shot Multibox Detector) which is one of CNN-based object detectors. First, the features of the input image are extracted based on the VGG network. Then, a total of six feature layers are applied to generate bounding boxes by predicting the location and type of object. We then use the NMS algorithm to get the bounding box that is the most likely object. Once an object bounding box has been determined, the invariant moment feature of the corresponding region is extracted using MI-FL, and stored and learned in advance. In the detection process, it is possible to detect the rotated image more robust than the conventional method by using the previously stored moment invariant feature information. The performance improvement of about 4 ~ 5% was confirmed by comparing SSD with existing SSD and MI-FL.