• Title/Summary/Keyword: Region growing method

Search Result 241, Processing Time 0.034 seconds

Normalized Digital Surface Model Extraction and Slope Parameter Determination through Region Growing of UAV Data (무인항공기 데이터의 영역 확장법 적용을 통한 정규수치표면모델 추출 및 경사도 파라미터 설정)

  • Yeom, Junho;Lee, Wonhee;Kim, Taeheon;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.499-506
    • /
    • 2019
  • NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 ㎡. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.

Road Extraction from High Resolution Satellite Image Using Object-based Road Model (객체기반 도로모델을 이용한 고해상도 위성영상에서의 도로 추출)

  • Byun, Young-Gi;Han, You-Kyung;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.421-433
    • /
    • 2011
  • The importance of acquisition of road information has recently been increased with a rapid growth of spatial-related services such as urban information system and location based service. This paper proposes an automatic road extraction method using object-based approach which was issued alternative of pixel-based method recently. Firstly, the spatial objects were created by MSRS(Modified Seeded Region Growing) method, and then the key road objects were extracted by using properties of objects such as their shape feature information and adjacency. The omitted road objects were also traced considering spatial correlation between extracted road and their neighboring objects. In the end, the final road region was extracted by connecting discontinuous road sections and improving road surfaces through their geometric properties. To assess the proposed method, quantitative analysis was carried out. From the experiments, the proposed method generally showed high road detection accuracy and had a great potential for the road extraction from high resolution satellite images.

Automatic Lung Segmentation using Hybrid Approach (하이브리드 접근 기법을 사용한 자동 폐 분할)

  • Yim, Yeny;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.625-635
    • /
    • 2005
  • In this paper, we propose a hybrid approach for segmenting the lungs efficiently and automatically in chest CT images. The proposed method consists of the following three steps. first, lungs and airways are extracted by two- and three-dimensional automatic seeded region growing and connected component labeling in low-resolution. Second, trachea and large airways are delineated from the lungs by two-dimensional morphological operations, and the left and right lungs are identified by connected component labeling in low-resolution. Third, smooth and accurate lung region borders are obtained by refinement based on image subtraction. In experiments, we evaluate our method in aspects of accuracy and efficiency using 10 chest CT images obtained from 5 patients. To evaluate the accuracy, we Present results comparing our automatic method to manually traced borders from radiologists. Experimental results show that proposed method which use connected component labeling in low-resolution reduce processing time by 31.4 seconds and maximum memory usage by 196.75 MB on average. Our method extracts lung surfaces efficiently and automatically without additional processing like hole-filling.

Image Segmentation Improvement by Selective Application Structuring Element of Mathematical Morphology (수리 형태학의 선택적 구조요소 적용에 의한 영상 분할의 성능 개선)

  • 오재현;김성곤;김종협;신홍규;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1972-1975
    • /
    • 2003
  • Video segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries. But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes image segmentation improvement by selective application structuring element of mathematical morphology.

  • PDF

The Endocardial Boundary Detection based on Statistical Charact'eristics of Echocardiographic Image (초음파 영상의 통계적 특성에 근거한 심내벽 윤곽선 검출)

  • Won, Chul-Ho;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.365-372
    • /
    • 1996
  • The researches to acquire diagnostic parameters from ultrasonic images are advanced with the progress of the digital image processing technique. Especially, the detection of endocardial boundary is very important in ultrasonic images, because endocardial boundary is used as a clinical parameter to estimate both the cardiac area and the variation of cardiac volume. Various methods to detect cardiac boundary are proposed, but these are insufficient to detect boundary. In this paper, an algorithm that detects the endocardial boundary, expanding the cavity region from the center using statistical information, is proposed The value of mean and sty:nd, wd deviation in cavity region is lower than those in muscle re- gion. Therefore, if we define the multiplication of mean and standard deviation as homogeneous coefficient, it can lead to conclusion that the pixels with small variation of these coefficleno are cavity region, and extraction of endocardial boundary from cavity region is possible. The proposed method detected endocardial boundary more effectively than edge based or threshold based method and is robuster to noise than radial searching method that has high dependency for center position.

  • PDF

Hand Region Tracking and Fingertip Detection based on Depth Image (깊이 영상 기반 손 영역 추적 및 손 끝점 검출)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.65-75
    • /
    • 2013
  • This paper proposes a method of tracking the hand region and detecting the fingertip using only depth images. In order to eliminate the influence of lighting conditions and obtain information quickly and stably, this paper proposes a tracking method that relies only on depth information, as well as a method of using region growing to identify errors that can occur during the tracking process and a method of detecting the fingertip that can be applied for the recognition of various gestures. First, the closest point of approach is identified through the process of transferring the center point in order to locate the tracking point, and the region is grown from that point to detect the hand region and boundary line. Next, the ratio of the invalid boundary, obtained by means of region growing, is used to calculate the validity of the tracking region and thereby judge whether the tracking is normal. If tracking is normal, the contour line is extracted from the detected hand region and the curvature and RANSAC and Convex-Hull are used to detect the fingertip. Lastly, quantitative and qualitative analyses are performed to verify the performance in various situations and prove the efficiency of the proposed algorithm for tracking and detecting the fingertip.

Lmainar flow and heat transfer of the fluid with low prandtl number in the entrance region of a circular pipe (낮은 프란틀수를 가지는 유체의 원관 입구 층류유동 및 열전달)

  • ;;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.284-292
    • /
    • 1981
  • The flow of fluid with low prandtl number in the entrance region of a circular pipe has been considered, where the wall temperature is maintained to be constant. A finite difference method is used for the integral form of the governing equations in order that they satisfy the conservative properties of the numerical solutions. It is confirmed that the hydrodynamic entrance length and be divided into growing boundary layer region and fully viscous region, which is compared with existing results obtained by using boundary layer approximations. By assuning the developing velocity profile in the entrance region, the thermal entrance length is estimated and the local Nusselt number is obtained at various locations along the axial dirction.

Video image segmentation based on color histogram and change detector (칼라 히스토그램과 변화 검출기에 기반한 비디오 영상 분할)

  • 박진우;정의윤;김희수;송근원;하영호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1093-1096
    • /
    • 1999
  • In this paper, video image segmentation algorithm based on color histogram and change detector is proposed. Color histograms are calculated from both changed region which is detected in the previous and current frame and unchanged region. With each histogram, modes and valleys are detected. Then, color vectors are calculated by averaging pixels in modes. Markers are extracted by labeling color vectors that represent modes, the watershed algorithm is applied to determine uncertain region. In growing region, the root mean square(RMS) of the distance between average pixel in marker region and adjacent pixel is used as a measure. The proposed algorithm based on color histogram and change detector segments video image fastly and effectively. And simulation results show that the proposed method determines the exact boundary between background and foreground.

  • PDF

Extraction of Ground Points from LiDAR Data using Quadtree and Region Growing Method (Quadtree와 영역확장법에 의한 LiDAR 데이터의 지면점 추출)

  • Bae, Dae-Seop;Kim, Jin-Nam;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.41-47
    • /
    • 2011
  • Processing of the raw LiDAR data requires the high-end processor, because data form is a vector. In contrast, if LiDAR data is converted into a regular grid pattern by filltering, that has advantage of being in a low-cost equipment, because of the simple structure and faster processing speed. Especially, by using grid data classification, such as Quadtree, some of trees and cars are removed, so it has advantage of modeling. Therefore, this study presents the algorithm for automatic extraction of ground points using Quadtree and refion growing method from LiDAR data. In addition, Error analysis was performed based on the 1:5000 digital map of sample area to analyze the classification of ground points. In a result, the ground classification accuracy is over 98%. So it has the advantage of extracting the ground points. In addition, non-ground points, such as cars and tree, are effectively removed as using Quadtree and region growing method.

Interactive Region Segmentation Method Using Agglomerative Clustering

  • Park, Sanghyun
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Due to global warming, various natural disasters such as floods and droughts are increasing. If we can detect the possibility of natural disasters in advance, we can prevent massive damages caused by natural disasters. Recent advances in visual sensor technologies have enabled remote monitoring of a variety of natural environments, including lakes, rivers, and shores. In this paper, we propose a method to segment an image obtained from video sensor networks into regions in order to monitor the environment effectively. In the proposed method, we first partition the image into superpixels and model the connections between superpixels as a graph. Then, initial seeds for each region are set by using the prior information, and the initial seeds are expanded to form regions using agglomerative clustering. Experimental results show that the proposed method extracts the regions from natural environment images easily and accurately.