• Title/Summary/Keyword: Region growing

Search Result 909, Processing Time 0.034 seconds

의료 영상을 이용한 영상 분할 알고리듬 연구

  • 호동수;이형구;김성현;김도일;서태석;최보영;이진희
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.77-77
    • /
    • 2003
  • CT와 MRI의 단면 영상을 대상으로 영상분할 (Image segmentation)과 Image registration방법을 이용하여 인체 모델을 개발 하고자 한다. 우선 인체의 Head와 Neck부분의 CT와 MR 영상을 얻어 뼈, 근육, 인대, 그리고 그 밖의 장기의 해부학적 영상 특징을 분석하였다. 인체의 Head와 Neck 부분에 대한 CT와 MR 영상에 대해 각 부위별로 ROI(region-of-interrest)를 설정하였고, 각 volxel 마다 3차원 좌표를 계산할 수 있는 소프트웨어를 개발하였다. 특히 각 해부학적 영상에서 부위별로 CT 번호를 분석하고, pulse sequence에 따른 MRI 영상의 부위별 특정을 분석하였다. 이 분석한 자료를 바탕으로 영상 분할을 하였다. 영상 분할전에 각종 잡음(noise) 제거 및 영상 분할을 효과적으로 처리하기 위해 기본적인 영상처리 (filtering)를 구현하였고, 대조도(contrast) 및 밝기(brightness)를 조절할 수 있게 프로그램을 구현하였다. 영상 분할 방법 중 선(line) 및 에지(edge) 의 검출 방법, 문턱치화(threshold) 방법, 영역확대(region growing) 방법으로 영상 분할을 해봄으로써 우리의 인체 모델링 개발에 가장 적합한 영상 분할 알고리듬 방법을 찾도록 시도하였다. 결과적으로 말하면, 한가지 방법의 알고리듬을 쓰는 것보다는 인체의 부위에 따라 두 가지 이상의 알고리듬 방법을 쓰는 것이 원하고자 하는 부위를 영상 분할하는데 더 효과적이다는 것을 알게 되었다. 우리의 연구 과제에서는 영역확대(region growing) 방법과 문턱치화 방법, 모드법(피크니스, 밸리)의 알고리듬을 이용하여 영상 분할을 한 결과 우리가 얻고자 하는 인체 부위별 중 근육과 뼈를 구별하는데는 별 무리가 없었으나, 인대 및 기타 장기를 구별하는데는 어려움을 겪게 되었다. 이후에 좀더 알고리듬을 연구하여 이번 연구에서 구별하기 어려운 장기 부분도 구별 할 수 있도록 노력하겠다.

  • PDF

A Study on Automatic Tooth Root Segmentation For Dental CT Images (자동 치아뿌리 영역 검출 알고리즘에 관한 연구)

  • Shin, Seunghwan;Kim, Yoonho
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.45-60
    • /
    • 2014
  • Dentist can obtain 3D anatomical information without distortion and information loss by using dental Computed Tomography scan images on line, and also can make the preoperative plan of implant placement or orthodontics. It is essential to segment individual tooth for making an accurate diagnosis. However, it is very difficult to distinguish the difference in the brightness between the dental and adjacent area. Especially, the root of a tooth is very elusive to automatically identify in dental CT images because jawbone normally adjoins the tooth. In the paper, we propose a method of automatically tooth region segmentation, which can identify the root of a tooth clearly. This algorithm separate the tooth from dental CT scan images by using Seeded Region Growing method on dental crown and by using Level-set method on dental root respectively. By using the proposed method, the results can be acquired average 19.2% better accuracy, compared to the result of the previous methods.

Ecosystem management system of Wangsuk stream region by geographical information systems (GIS를 이용한 왕숙천 유역의 생태계 관리 시스템)

  • 이웅재;원두희
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.54-60
    • /
    • 2001
  • The need and concern about ecosystem are growing rapidly. However, ecosystem management systems are still in the first stage since the data are handled locally and separately. It results in the waste of money and time. In this research, we designed and implemented ecosystem management system of stream region using geographical information system(GIS) that is able to be used to manage the natural resource efficiently. It is expected to be used as a useful tool for Improvement of environment and management of ecosystem as well as recovery of natural environment.

  • PDF

A study on segmentation of medical image using fuzzy set theory (퍼지 이론을 이용한 의료 영상 특징 추출에 관한 연구)

  • 김형석;한영오;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.741-745
    • /
    • 1991
  • This paper describes a feature extraction in digitized chest X-ray image and CT head Image. There are Extraction, Thresholding, Region G rowing, Split-Merge and Relaxation in feature extraction technique. In this study, Region Growing System was realized and Fuzzy Set Theory was applied in order to extract the vague region which the conventional method has difficulties in extracting. The performance of proposed algorithm was proved by being applied to chest X-ray image and CT head image.

  • PDF

Sequential Defect Region Segmentation according to Defect Possibility in TFT-LCD Image (TFT-LCD영상에서 결함 가능성에 따른 순차적 결함영역 분할)

  • Chang, Chung Hwan;Lee, SeungMin;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.633-640
    • /
    • 2020
  • Defect region segmentation of TFT-LCD images is performed by combining defect pixels detected by a defect detection method into defect region, or by using morphological operations to segment defect region. Therefore, the result of segmentation of the defect region is highly dependent on the defect detection result. In this paper, we propose a method which segments defect regions sequentially according to the possibility of being included in defect regions in TFT-LCD images. The proposed method repeats the process of detecting a seed using the median value and the median absolute deviation of the image, and segments the defect region using the seeded region growing method. We confirmed the superiority of the proposed method to segment defect regions using pseudo-images and real TFT-LCD images.

Real-time Hand Region Detection and Tracking using Depth Information (깊이정보를 이용한 실시간 손 영역 검출 및 추적)

  • Joo, SungIl;Weon, SunHee;Choi, HyungIl
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • In this paper, we propose a real-time approach for detecting and tracking a hand region by analyzing depth images. We build a hand model in advance. The model has the shape information of a hand. The detecting process extracts out moving areas in an image, which are possibly caused by moving a hand in front of a camera. The moving areas can be identified by analyzing accumulated difference images and applying the region growing technique. The extracted moving areas are compared against a hand model to get justified as a hand region. The tracking process keeps the track of center points of hand regions of successive frames. For this purpose, it involves three steps. The first step is to determine a seed point that is the closest point to the center point of a previous frame. The second step is to perform region growing to form a candidate region of a hand. The third step is to determine the center point of a hand to be tracked. This point is searched by the mean-shift algorithm within a confined area whose size varies adaptively according to the depth information. To verify the effectiveness of our approach, we have evaluated the performance of our approach while changing the shape and position of a hand as well as the velocity of hand movement.

Characteristics of Nutritional Components in Astringent Persimmons according to Growing Region and Cultivar (떫은감의 재배지역과 품종에 따른 영양성분 특성)

  • Bian, Lin-Lin;You, Su-Yeon;Park, Jeongjin;Yang, Soo Jin;Chung, Hyun-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.379-385
    • /
    • 2015
  • The nutritional components of astringent persimmons according to growing region (five different regions) and cultivar (Daebong and Bansi) were analyzed. The analyzed nutritional components were proximate compositions, insoluble and soluble dietary fibers, vitamin C, carotenes (${\beta}$-carotene and lycopene), free sugars (glucose, fructose, and sucrose), sugar alcohols (xylitol, sorbitol, and mannitol), minerals (Na, Mg, K, Ca, Mn, Fe, and Zn), organic acids (tartaric acid, malic acid, citric acid, and succinic acid), tannic acid, total phenolic compounds, and flavonoids. Daebong and Bansi, which are representative cultivars of astringent persimmons grown in Korea, exhibited significant differences in nutritional components. Insoluble dietary fibers, ${\beta}$-carotene, fructose, sucrose, mannitol, potassium, malic acid, succinic acid, and total phenolic compounds were present at higher levels in Daebong as compared to Bansi. On the other hand, Bansi was rich in moisture, crude protein, vitamin C, Ca, Mn, tartaric acid, and flavonoids. Nutritional components were highly influenced by growing region. Daebong grown in region A was greater in ${\beta}$-carotene, sorbitol, mannitol, zinc, and total phenolic compounds among the all other tested persimmons grown in five different regions. The crude protein, Na, Ca, Mn, tartaric acid, and flavonoids were highest in Bansi grown in E region.

Developments of Semi-Automatic Vertebra Bone Segmentation Tool using Valley Tracking Deformable Model (계곡 추적 Deformable Model을 이용한 반자동 척추뼈 분할 도구의 개발)

  • Kim, Yie-Bin;Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.791-797
    • /
    • 2007
  • This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.

A Fast Lower Extremity Vessel Segmentation Method for Large CT Data Sets Using 3-Dimensional Seeded Region Growing and Branch Classification

  • Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.

A Region Growing Method using Slice Image Information for a Tubular Organ (관도계 기관 분할을 위한 슬라이스영상 정보를 이용한 영역 성장법)

  • 구교범;김동성;김종효
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • 의료 영상에서 관심 있는 부위를 3차원으로 재구성하여 보는 것은, 정확한 진단을 위해서 매우 중요하다. 이러한 3차원 재구성을 위해서는 관심 있는 영역의 분할이 필수적인 선행작업이다. 본 논문에서는 관도계 기관의 분할을 위해서 슬라이스 영상의 정보를 이용한 3차원 영역 성장법을 제안한다. 제안된 방법은 2차원 슬라이스 영상에서 영역 성장법에 의해 영역을 확장시키고, 그 이웃한 슬라이스들에 씨앗점을 전달하여 재귀적으로 3차원 체적을 확장하여 영상을 분할한다. 이때, 이웃한 슬라이스간의 영역의 크기의 제약을 이용하여 새나감을 방지한다. 제안된 방법을 기관지의 분할에 적용한 결과, 새나감 없이 뾰족한 가지들까지도 성공적으로 분할했으며, 튜브의 중심 축이 고차원 곡선인 경우에도 성공적으로 분할했다.

  • PDF