• 제목/요약/키워드: Region classification

검색결과 1,021건 처리시간 0.025초

Deformable Template과 Condensation을 이용한 손 영역 분류와 추적 (Classification and Tracking of Hand Region Using Deformable Template and Condensation)

  • 정현석;주영훈
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1477-1481
    • /
    • 2010
  • In this paper, we propose the classification and tracking method of the hand region using deformable template and condensation. To do this, first, we extract the hand region by using the fuzzy color filter and HCbCr color model. Second, we extract the edge of hand by applying the Canny edge algorithm. Third, we find the first template by calculating the conditional probability between the extracted edge and the model edge. If the accurate template of the first object is decided, the condensation algorithm tries to track it. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

Unsupervised Image Classification using Region-growing Segmentation based on CN-chain

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제20권3호
    • /
    • pp.215-225
    • /
    • 2004
  • A multistage hierarchical clustering technique, which is an unsupervised technique, was suggested in this paper for classifying large remotely-sensed imagery. The multistage algorithm consists of two stages. The 'local' segmentor of the first stage performs region-growing segmentation by employing the hierarchical clustering procedure of CN-chain with the restriction that pixels in a cluster must be spatially contiguous. The 'global' segmentor of the second stage, which has not spatial constraints for merging, clusters the segments resulting from the previous stage, using the conventional agglomerative approach. Using simulation data, the proposed method was compared with another hierarchical clustering technique based on 'mutual closest neighbor.' The experimental results show that the new approach proposed in this study considerably increases in computational efficiency for larger images with a low number of bands. The technique was then applied to classify the land-cover types using the remotely-sensed data acquired from the Korean peninsula.

머신 러닝을 이용한 영상 특징 기반 전기차 검출 및 분류 시스템 (Image Feature-based Electric Vehicle Detection and Classification System Using Machine Learning)

  • 김상혁;강석주
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1092-1099
    • /
    • 2017
  • This paper proposes a novel way of vehicle detection and classification based on image features. There are two main processes in the proposed system, which are database construction and vehicle classification processes. In the database construction, there is a tight censorship for choosing appropriate images of the training set under the rigorous standard. These images are trained using Haar features for vehicle detection and histogram of oriented gradients extraction for vehicle classification based on the support vector machine. Additionally, in the vehicle detection and classification processes, the region of interest is reset using a number plate to reduce complexity. In the experimental results, the proposed system had the accuracy of 0.9776 and the $F_1$ score of 0.9327 for vehicle classification.

퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류 (Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제19권4호
    • /
    • pp.329-339
    • /
    • 2003
  • 본 연구에서는 무감독 영상분류를 위하여 특성이 다른 센서로 수집된 영상들에 대한 의사결정 수준의 영상 융합기법을 제안하였다. 제안된 기법은 공간 확장 분할에 근거한 무감독 계층군집 영상분류기법을 개개의 센서에서 수집된 영상에 독립적으로 적용한 후 그 결과로 생성되는 분할지역의 퍼지 클래스 벡터(fuzzy class vector)를 이용하여 각 센서의 분류 결과를 융합한다. 퍼지 클래스벡터는 분할지역이 각 클래스에 속할 확률을 표시하는 지시(indicator) 벡터로 간주되며 기대 최대화 (EM: Expected Maximization) 추정 법에 의해 관련 변수의 최대 우도 추정치가 반복적으로 계산되어진다. 본 연구에서는 같은 특성의 센서 혹은 밴드 별로 분할과 분류를 수행한 후 분할지역의 분류결과를 퍼지 클래스 벡터를 이용하여 합성하는 접근법을 사용하고 있으므로 일반적으로 다중센서의 영상의 분류기법에 사용하는 화소수준의 영상융합기법에서처럼 서로 다른 센서로부터 수집된 영상의 화소간의 공간적 일치에 대한 높은 정확도를 요구하지 않는다. 본 연구는 한반도 전라북도 북서지역에서 관측된 다중분광 SPOT 영상자료와 AIRSAR 영상자료에 적용한 결과 제안된 영상 융합기법에 의한 피복 분류는 확장 벡터의 접근법에 의한 영상 융합보다 서로 다른 센서로부터 얻어지는 정보를 더욱 적합하게 융합한다는 것을 보여주고 있다.

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

지문 영상의 자동 분류에 관한 연구 (A Study on Automatic Classification of Fingerprint Images)

  • 임인식;신태민;박구만;이병래;박규태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.628-631
    • /
    • 1988
  • This paper describes a fingerprint classification on the basis of feature points(whorl, core) and feature vector and uses a syntactic approach to identify the shape of flow line around the core. Fingerprint image is divided into 8 by 8 subregions and fingerprint region is separated from background. For each subregion of fingerprint region, the dominant ridge direction is obtained to use the slit window quantized in 8 direction and relaxation is performed to correct ridge direction code. Feature points(whorl, core, delta) are found from the ridge direction code. First classification procedure divides the types of fingerprint into 4 class based on whorl and cores. The shape of flow line around the core is obtained by tracing for the fingerprint which has one core or two core and is represented as string. If the string is acceptable by LR(1) parser, feature vector is obtained from feature points(whorl, core, delta) and the shape of flow line around the core. Feature vector is used hierarchically and linearly to classify fingerprint again. The experiment resulted in 97.3 percentages of sucessful classification for 71 fingerprint impressions.

  • PDF

Edge-Preserving Algorithm for Block Artifact Reduction and Its Pipelined Architecture

  • Vinh, Truong Quang;Kim, Young-Chul
    • ETRI Journal
    • /
    • 제32권3호
    • /
    • pp.380-389
    • /
    • 2010
  • This paper presents a new edge-protection algorithm and its very large scale integration (VLSI) architecture for block artifact reduction. Unlike previous approaches using block classification, our algorithm utilizes pixel classification to categorize each pixel into one of two classes, namely smooth region and edge region, which are described by the edge-protection maps. Based on these maps, a two-step adaptive filter which includes offset filtering and edge-preserving filtering is used to remove block artifacts. A pipelined VLSI architecture of the proposed deblocking algorithm for HD video processing is also presented in this paper. A memory-reduced architecture for a block buffer is used to optimize memory usage. The architecture of the proposed deblocking filter is verified on FPGA Cyclone II and implemented using the ANAM 0.25 ${\mu}m$ CMOS cell library. Our experimental results show that our proposed algorithm effectively reduces block artifacts while preserving the details. The PSNR performance of our algorithm using pixel classification is better than that of previous algorithms using block classification.

유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적 (Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Coarse/fine 전략을 이용한 문서 구조 분석 (Document Layout Analysis Using Coarse/Fine Strategy)

  • 박동열;곽희규;김수형
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.198-201
    • /
    • 2000
  • We propose a method for analyzing the document structure. This method consists of two processes, segmentation and classification. The segmentation first divides a low resolution image, and then finely splits the original document image using projection profiles. The classification deterimines each segmented region as text, line, table or image. An experiment with 238 documents images shows that the segmentation accuracy is 99.1% and the classification accuracy is 97.3%.

  • PDF

컬러 영상에서 평균 이동 클러스터링과 단계별 영역 병합을 이용한 자동 원료 분류 알고리즘 (Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color)

  • 김상준;곽준영;고병철
    • 방송공학회논문지
    • /
    • 제21권3호
    • /
    • pp.425-435
    • /
    • 2016
  • 본 논문에서는 카메라로부터 입력된 영상으로부터 쌀, 커피, 녹차 등 다양한 원료를 양품과 불량품으로 자동 분류하기 위한 분류 모델을 제안한다. 현재 농산물 원료 분류를 위해서 주로 숙달된 노동력의 육안 선택에 의존하고 있지만 작업시간이 길어질수록 반복적인 작업에 의해 분류 능력이 현저히 떨어지는 문제점이 있다. 노동력에 부분적으로 의존하는 기존 제품의 문제점을 해결하기 위해, 본 논문에서는 평균-이동 클러스터링 알고리즘과 단계별 영역 병합 알고리즘을 결합하는 비전기반 자동 원료 분류 알고리즘을 제안한다. 우선 입력 원료 영상에서 평균-이동 클러스터링 알고리즘을 적용하여 영상을 N개의 클러스터 영역으로 분할한다. 다음단계에서 N개의 클러스터 영역 중에서 대표 영역을 선택하고 이웃 영역들의 영역의 색상과 위치 근접성을 기반으로 단계별 영역 병합 알고리즘을 적용하여 유사한 클러스터 영역을 병합한다. 병합된 원료 객체는 RG, GB, BR의 2D 색상 분표로 표현되고, 병합된 원료 객체에 대해 색상 분포 타원을 만든다. 이후 미리 실험적으로 설정된 임계값을 적용하여 원료를 양품과 불량품을 구분한다. 다양한 원료 영상에 대해 본 논문에서 제안하는 알고리즘을 적용한 결과 기존의 클러스터링 알고리즘이나 상업용 분류 방법에 비해 사용자의 인위적 조작이 덜 필요하고 분류성능이 우수한 결과를 나타냄을 알 수 있었다.