• Title/Summary/Keyword: Region Segmentation

Search Result 911, Processing Time 0.026 seconds

User-steered balloon: Application to Thigh Muscle Segmentation of Visible Human (사용자 조정 풍선 : Visible Human의 다리 근육 분할의 적용)

  • Lee, Jeong-Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.3
    • /
    • pp.266-274
    • /
    • 2000
  • Medical image segmentation, which is essential in diagnosis and 3D reconstruction, is performed manually in most applications to produce accurate results. However, manual segmentation requires lots of time to segment, and is difficult even for the same operator to reproduce the same segmentation results for a region. To overcome such limitations, we propose a convenient and accurate semiautomatic segmentation method. The proposed method initially receives several control points of an ROI(Region of Interest Region) from a human operator, and then finds a boundary composed of a minimum cost path connecting the control points, which is the Live-wire method. Next, the boundary is modified to overcome limitations of the Live-wire, such as a zig-zag boundary and erosion of an ROI. Finally, the region is segmented by SRG(Seeded Region Growing), where the modified boundary acts as a blockage to prevent leakage. The proposed User-steered balloon method can overcome not only the limitations of the Live-wire but also the leakage problem of the SRG. Segmentation results of thigh muscles of the Visible Human are presented.

  • PDF

A Color Image Segmentation Algorithm based on Region Merging using Hue Differences (색상 차를 이용하는 영역 병합에 기반한 칼라영상 분할 알고리즘)

  • 박영식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.63-71
    • /
    • 2003
  • This paper describes a color image segmentation algorithm based on region merging using hue difference as a restrictive condition. The proposed algorithm using mathematical morphology and a modified watershed algorithm does over-segmentation in the RGB space to preserve contour information of regions. Then, the segmentation result of color image is acquired by repeated region merging using hue differences as a restrictive condition. This stems from human visual system based on hue, saturation, and intensity. Hue difference between two regions is used as a restrictive condition for region merging because it becomes more important factor than color difference if intensity is not low. Simulation results show that the proposed color image segmentation algorithm provides efficient segmentation results with the predefined number of regions for various color images.

Semi-Automatic Segmentation based on Color Information (색상 정보를 이용한 반자동 영상분할 기법)

  • 김민호;최재각;호요성
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.619-622
    • /
    • 1999
  • This paper describes a new semi-automatic segmentation algorithm based on color information. Semi-automatic segmentation mainly consists of intra-frame segmentation and inter-frame segmentation. While intra-frame segmentation extracts video objects of interest from boundary information provided by the user and intensity information of the image, inter-frame segmentation partitions the image into the video objects and background by tracking the motion of video objects. For inter-frame segmentation, color information (Y, Cb and Cr) of the current frame can be used efficiently in order to find the exact boundary of the video objects. In this paper we propose a new region growing algorithm which can maximize the ability of region differentiation, while preserving features of each color component.

  • PDF

Image Segmentation Using FSCL Neural Network (FSCL 신경망을 이용한 영상 분할)

  • 홍원학;김웅규;김남철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1581-1590
    • /
    • 1995
  • Recently, advanced video coding techniques using segmentation technique have been actively researched as candidates for video coding of MPEG-4 standard. The conventional segmentation techniques are unsuitable for real-time process because they have sequential structure. In this paper, we propose a new image segmentation technique using competitive learning neural network for vector quantization. The proposed segmentation procedure consist of prefiltering, primary and secondary segmentation, and a small region ellimination process. Primary segmentation segments input image in detail. Secondary segmentation merges similar region using a repetitive FSCL(Frequency sensitive competive learning) neural network. In this process, it is possible to segment an image from high resolution to low resolution by adjusting the number of repetition. Finally, small regions are merged into adjacent regions. Experimental results show that the procedure described yields reconstructed images of reasonably acceptable quality at bit rates of 0. 25 - 0.3 bit/pel.

  • PDF

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

Facial Region Segmentation using Watershed Algorithm based on Depth Information (깊이정보 기반 Watershed 알고리즘을 이용한 얼굴영역 분할)

  • Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.225-230
    • /
    • 2011
  • In this paper, we propose the segmentation method for detecting the facial region by using watershed based on depth information and merge algorithm. The method consists of three steps: watershed segmentation, seed region detection, and merge. The input color image is segmented into the small uniform regions by watershed. The facial region can be detected by merging the uniform regions with chromaticity and edge constraints. The problem in the existing method using only chromaticity or edge can solved by the proposed method. The computer simulation is performed to evaluate the performance of the proposed method. The simulation results shows that the proposed method is superior to segmentation facial region.

An Enhancement of Image Segmentation Using Modified Watershed Algorithm

  • Kwon, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose a watershed algorithm that applies a high-frequency enhancement filter to emphasize the boundary and a local adaptive threshold to search for minimum points. The previous method causes the problem of over-segmentation, and over- segmentation appears around the boundary of the object, creating an inaccurate boundary of the region. The proposed method applies a high-frequency enhancement filter that emphasizes the high-frequency region while preserving the low-frequency region, and performs a minimum point search to consider local characteristics. When merging regions, a fixed threshold is applied. As a result of the experiment, the proposed method reduced the number of segmented regions by about 58% while preserving the boundaries of the regions compared to when high frequency emphasis filters were not used.

Region Segmentation Technique Based on Active Contour for Object Segmentation (객체 분할을 위한 Active Contour 기반의 영역 분할 기법 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Jong-Yong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.3
    • /
    • pp.167-172
    • /
    • 2012
  • This paper presents the technique separating objects on the single frame image from the background using region segmentation technique based on active contour. Active contour is to extract contours of objects from the image, which is set to have multi-search starting point to extract each objects contours for multi-object segmentation. Initial rough object segments are generated from binary-coded image using object specific contour information, and then the hole filling is performed to compensate internal segmentation caused by the change of inner object hole area and pixels. This procedure complements the problems caused by the noise from the region segmentation and the errors of segmentation near by the contour. The proposed method and conventional method is compared to verify the superiority of the proposed method.

Image Segmentation Improvement by Selective Application Structuring Element of Mathematical Morphology (수리 형태학의 선택적 구조요소 적용에 의한 영상 분할의 성능 개선)

  • 오재현;김성곤;김종협;신홍규;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1972-1975
    • /
    • 2003
  • Video segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries. But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes image segmentation improvement by selective application structuring element of mathematical morphology.

  • PDF

Region-based Vessel Segmentation Using Level Set Framework

  • Yu Gang;Lin Pan;Li Peng;Bian Zhengzhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.660-667
    • /
    • 2006
  • This paper presents a novel region-based snake method for vessel segmentation. According to geometric shape analysis of the vessel structure with different scale, an efficient statistical estimation of vessel branches is introduced into the energy objective function, which applies not only the vessel intensity information, but also geometric information of line-like structure in the image. The defined energy function is minimized using the gradient descent method and a new region-based speed function is obtained, which is more accurate to the vessel structure and not sensitive to the initial condition. The narrow band algorithm in the level set framework implements the proposed method, the solution of which is steady. The segmentation experiments are shown on several images. Compared with other geometric active contour models, the proposed method is more efficient and robust.