• 제목/요약/키워드: Region Growing Segmentation

검색결과 123건 처리시간 0.027초

피부색 및 깊이정보를 이용한 영역채움 기반 손 분리 기법 (Region-growing based Hand Segmentation Algorithm using Skin Color and Depth Information)

  • 서종훈;채승호;심진욱;김하영;한탁돈
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1031-1043
    • /
    • 2013
  • 영상에서 배경을 제거하고 손을 분리하는 기술은 손 인식 연구에서 가장 먼저 수행되는 기술이며, 분리된 결과 영상의 성능에 따라 이후의 인식 단계의 성능이 결정되는 중요한 기술이다. 기존의 연구는 조명 및 배경의 변화에 취약하거나 다수의 사용자와 상호작용에 한계가 있었다. 본 논문에서는 컬러 영상과 깊이 영상을 혼용하여 손을 분리하는 기술을 제안한다. 먼저 입력된 컬러 영상을 이용하여 복잡한 환경에서도 정확하게 영역 채움을 위한 초기 위치를 설정하였다. 이 위치를 기준으로 영역 채움 연산을 위한 한계 영역을 재설정하여 조명 변화로 침식된 영역을 포함하도록 하고, 깊이 영상에서 영역 채움 연산을 수행함으로써 조명과 환경의 변화에도 강인하게 손의 영역을 분리하도록 하였다. 또한, 이렇게 분리된 손의 영역을 이용하여 실시간으로 피부 모델을 학습함으로써 조명 환경에 적응적으로 피부 모델을 갱신하여 보다 강인한 인식 성능을 얻을 수 있었다. 이를 다양한 조명 및 배경 환경에서 기존의 알고리즘과 비교 실험을 수행하여 강인한 인식 성능을 확인할 수 있었으며, 특히 역광 환경과 같이 조명 변화가 극심한 환경에서 강인한 성능을 보여주었다.

Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할 (Color image segmentation using the possibilistic C-mean clustering and region growing)

  • 엄경배;이준환
    • 전자공학회논문지S
    • /
    • 제34S권3호
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정 (An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition)

  • 김동기;이성규;이문욱;강이석
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.

A GEOSTATISTIC BASED SEGMENTATION APPROACH FOR REMOTELY SENSED IMAGES

  • Chen, Qiu-Xiao;Luo, Jian-Cheng
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1323-1325
    • /
    • 2003
  • As to many conventional segmentation approaches , spatial autocorrelation, perhaps being the first law of geography, is always overlooked. Thus, the corresponding segmentation results are always not so satisfying, which will further affect the subsequent image processing or analyses. In order to improve segmentation results, a geostatistic based segmentation approach with the consideration of spatial autocorrelation hidden in remote-sensing images is proposed in this article. First, by calculating the mean variance between each pair of pixels at given different lag distances, information like the size of typical targets in the scene can be obtained, and segmentation thresholds are calculated accordingly. Second, an initial region growing segmentation approach is implemented. Finally, based on the segmentation thresholds obtained at the first step and the initial segmentation results, the final segmentation results are obtained using the same region growing approach by taking the local mutual best fitting strategy. From the experiment results, we found the approach is rather promising. However, there still exists some problems to be settled, and further researches should be conducted in the future.

  • PDF

계곡 추적 Deformable Model을 이용한 반자동 척추뼈 분할 도구의 개발 (Developments of Semi-Automatic Vertebra Bone Segmentation Tool using Valley Tracking Deformable Model)

  • 김예빈;김동성
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.791-797
    • /
    • 2007
  • This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.

구역 확장을 응용한 의학 영상 자동 분리 알고리즘 (An Algorithm of Automatic Segmentation by Region Growing)

  • 성원;박종원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.763-766
    • /
    • 2002
  • 오늘날 CT나 MR 등을 통한 의학 영상 기술과 컴퓨터 성능의 향상으로 인체 내부 장기의 영상을 비교적 용이하게 얻을 수 있으며 얻어진 영상 정보는 컴퓨터로 수치화되므로 데이터의 조작 및 가공 또한 용이하다. 그러나, 이 데이터는 2D 슬라이스(slice)들의 연속으로 표현되므로 이것을 보다 가시화, 조작, 분석이 용이한 상태로 바꾸기 위해서는 3 차원 구조로의 재구성이 필요하게 된다. 이것을 위하여 무엇보다도 먼저 CT 나 MR 을 통하여 얻어진 영상을 분석하여 특정장기(organ)의 영상 부분을 다른 조직의 영상부분으로부터 분리(segmentation)할 필요가 있다. 이러한 Segmentation방법에는 여러가지가 있는데, 수작업의 결합 등으로 인해서 비효율적일 수 밖에 없는 문제점을 가지고 있다. 이에 본 논문은 보다 효율적인 segmentation 의 처리를 위하여 구역확장(region-growing) 기법을 응용한 새로운 segmentation 방법을 개발하였다. 그리하여, 본 논문이 제안한 알고리즘을 슬라이스 간격이 큰 2 차원 복부 CT 영상에 적용시켜 간(liver)의 추출을 시도하였고 3차원 표현 결과를 확인할 수 있었다.

  • PDF

Carpal Bone Segmentation Using Modified Multi-Seed Based Region Growing

  • Choi, Kyung-Min;Kim, Sung-Min;Kim, Young-Soo;Kim, In-Young;Kim, Sun-Il
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.332-337
    • /
    • 2007
  • In the early twenty-first century, minimally invasive surgery is the mainstay of various kinds of surgical fields. Surgeons gave percutaneously surgical treatment of the screw directly using a fluoroscopic view in the past. The latest date, they began to operate the fractured carpal bone surgery using Computerized Tomography (CT). Carpal bones composed of wrist joint consist of eight small bones which have hexahedron and sponge shape. Because of these shape, it is difficult to grasp the shape of carpal bones using only CT image data. Although several image segmentation studies have been conducted with carpal bone CT image data, more studies about carpal bone using CT data are still required. Especially, to apply the software implemented from the studies to clinical fIeld, the outcomes should be user friendly and very accurate. To satisfy those conditions, we propose modified multi-seed region growing segmentation method which uses simple threshold and the canny edge detector for finding edge information more accurately. This method is able to use very easily and gives us high accuracy and high speed for extracting the edge information of carpal bones. Especially, using multi-seed points, multi-bone objects of the carpal bone are extracted simultaneously.

사용자 조정 풍선 : Visible Human의 다리 근육 분할의 적용 (User-steered balloon: Application to Thigh Muscle Segmentation of Visible Human)

  • 이정호;김동성;강흥식
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권3호
    • /
    • pp.266-274
    • /
    • 2000
  • 진단이나 인체 모델의 형성에 있어서 필수적인 의료 영상의 분할(Segmentation)은 정확성을 얻기 위해 대부분 수작업에 의해 수행되고 있다. 하지만 수작업은 많은 시간이 소비되며, 같은 영역을 재분할했을 때 동일한 결과를 얻기가 어렵다. 이를 해결하기 위해 본 논문에서는 사용하기 편리하면서 수작업의 정확성을 유지할 수 있는 반자동화된 영상 분할방법을 제안한다. 제안된 방법은 먼저 사용자로부터 분할하고자 하는 영역의 경계에 해당하는 제어점을 몇 개 입력받고 제어점들간의 최소 비용 경로를 연결하여 외곽선을 획득하는 Live-wire를 수행한다. 하지만 Live-wire는 톱날 모양의 외곽선을 형성하거나 영역의 침식을 발생시키므로, 이러한 문제점을 해결하기 위해서 획득된 분할 영역의 외곽선을 재설정시킨 후 이것을 장벽으로 사용하여 SRG(Seeded Region Growing)을 수행하였다. 제안된 User-steered balloon방법은 Live-wire의 문제점을 해결할 뿐만 아니라, SRG가 성장시 새어나가는(Leakage) 문제점도 해결할 수 있다. 본 논문에서는 제안된 방법을 가지고 Visible Human의 다리 근육에 대한 분할을 수행하여 제안된 방법을 검증하였다.

  • PDF

수리 형태학의 선택적 구조요소 적용에 의한 영상 분할의 성능 개선 (Image Segmentation Improvement by Selective Application Structuring Element of Mathematical Morphology)

  • 오재현;김성곤;김종협;신홍규;김환용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1972-1975
    • /
    • 2003
  • Video segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries. But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes image segmentation improvement by selective application structuring element of mathematical morphology.

  • PDF

TFT-LCD영상에서 결함 가능성에 따른 순차적 결함영역 분할 (Sequential Defect Region Segmentation according to Defect Possibility in TFT-LCD Image)

  • 장충환;이승민;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제23권5호
    • /
    • pp.633-640
    • /
    • 2020
  • Defect region segmentation of TFT-LCD images is performed by combining defect pixels detected by a defect detection method into defect region, or by using morphological operations to segment defect region. Therefore, the result of segmentation of the defect region is highly dependent on the defect detection result. In this paper, we propose a method which segments defect regions sequentially according to the possibility of being included in defect regions in TFT-LCD images. The proposed method repeats the process of detecting a seed using the median value and the median absolute deviation of the image, and segments the defect region using the seeded region growing method. We confirmed the superiority of the proposed method to segment defect regions using pseudo-images and real TFT-LCD images.