• Title/Summary/Keyword: Region Extraction

Search Result 1,020, Processing Time 0.032 seconds

An Algorithm for Segmenting the License Plate Region of a Vehicle Using a Color Model (차량번호판 색상모델에 의한 번호판 영역분할 알고리즘)

  • Jun Young-Min;Cha Jeong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.21-32
    • /
    • 2006
  • The license plate recognition (LPR) unit consists of the following core components: plate region segmentation, individual character extraction, and character recognition. Out of the above three components, accuracy in the performance of plate region segmentation determines the overall recognition rate of the LPR unit. This paper proposes an algorithm for segmenting the license plate region on the front or rear of a vehicle in a fast and accurate manner. In the case of the proposed algorithm images are captured on the spot where unmanned monitoring of illegal parking and stowage is performed with a variety of roadway environments taken into account. As a means of enhancing the segmentation performance of the on-the-spot-captured images of license plate regions, the proposed algorithm uses a mathematical model for license plate colors to convert color images into digital data. In addition, this algorithm uses Gaussian smoothing and double threshold to eliminate image noises, one-pass boundary tracing to do region labeling, and MBR to determine license plate region candidates and extract individual characters from the determined license plate region candidates, thereby segmenting the license plate region on the front or rear of a vehicle through a verification process. This study contributed to addressing the inability of conventional techniques to segment the license plate region on the front or rear of a vehicle where the frame of the license plate is damaged, through processing images in a real-time manner, thereby allowing for the practical application of the proposed algorithm.

A Study on Extraction of text region using shape analysis of text in natural scene image (자연영상에서 문자의 형태 분석을 이용한 문자영역 추출에 관한 연구)

  • Yang, Jae-Ho;Han, Hyun-Ho;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we propose a method of character detection by analyzing image enhancement and character type to detect characters in natural images that can be acquired in everyday life. The proposed method emphasizes the boundaries of the object part using the unsharp mask in order to improve the detection rate of the area to be recognized as a character in a natural image. By using the boundary of the enhanced object, the character candidate region of the image is detected using Maximal Stable Extermal Regions (MSER). In order to detect the region to be judged as a real character in the detected character candidate region, the shape of each region is analyzed and the non-character region other than the region having the character characteristic is removed to increase the detection rate of the actual character region. In order to compare the objective test of this paper, we compare the detection rate and the accuracy of the character region with the existing methods. Experimental results show that the proposed method improves the detection rate and accuracy of the character region over the existing character detection method.

Study on video character extraction and recognition (비디오 자막 추출 및 인식 기법에 관한 연구)

  • 김종렬;김성섭;문영식
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.141-144
    • /
    • 2001
  • In this paper, a new algorithm for extracting and recognizing characters from video, without pre-knowledge such as font, color, size of character, is proposed. To improve the recognition rate for videos with complex background at low resolution, continuous frames with identical text region are automatically detected to compose an average frame. Using boundary pixels of a text region as seeds, we apply region filling to remove background from the character Then color clustering is applied to remove remaining backgrounds according to the verification of region filling process. Features such as white run and zero-one transition from the center, are extracted from unknown characters. These feature are compared with a pre-composed character feature set to recognize the characters.

  • PDF

The Analysis of the Nano-Scale MOSFET Resistance

  • Lee Jun Ha;Lee Hoong Joo;Song Young Jin
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.801-803
    • /
    • 2004
  • The current drive in an MOSFET is limited by the intrinsic channel resistance. All the other parasitic elements in a device structure playa significant role and degrade the device performance. These other resistances need to be less than $10{\%}-20{\%}$ of the channel resistance. To achieve the requirements, we should investigate the methodology of separation and quantification of those resistances. In this paper, we developed the extraction method of resistances using calibrated TCAD simulation. The resistance of the extension region is also partially determined by the formation of a surface accumulation region that forms under the gate in the tail region of the extension profile. This resistance is strongly affected by the abruptness of the extension profile because the steeper the profile is, the shorter this accumulation region will be.

  • PDF

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

Extraction of Infrared Target based on Gaussian Mixture Model

  • Shin, Do Kyung;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.332-338
    • /
    • 2013
  • We propose a method for target detection in Infrared images. In order to effectively detect a target region from an image with noises and clutters, spatial information of the target is first considered by analyzing pixel distributions of projections in horizontal and vertical directions. These distributions are represented as Gaussian distributions, and Gaussian Mixture Model is created from these distributions in order to find thresholding points of the target region. Through analyzing the calculated Gaussian Mixture Model, the target region is detected by eliminating various backgrounds such as noises and clutters. This is performed by using a novel thresholding method which can effectively detect the target region. As experimental results, the proposed method has achieved better performance than existing methods.

  • PDF

An Automatic Camera Tracking System for Video Surveillance

  • Lee, Sang-Hwa;Sharma, Siddharth;Lin, Sang-Lin;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.42-45
    • /
    • 2010
  • This paper proposes an intelligent video surveillance system for human object tracking. The proposed system integrates the object extraction, human object recognition, face detection, and camera control. First, the object in the video signals is extracted using the background subtraction. Then, the object region is examined whether it is human or not. For this recognition, the region-based shape descriptor, angular radial transform (ART) in MPEG-7, is used to learn and train the shapes of human bodies. When it is decided that the object is human or something to be investigated, the face region is detected. Finally, the face or object region is tracked in the video, and the pan/tilt/zoom (PTZ) controllable camera tracks the moving object with the motion information of the object. This paper performs the simulation with the real CCTV cameras and their communication protocol. According to the experiments, the proposed system is able to track the moving object(human) automatically not only in the image domain but also in the real 3-D space. The proposed system reduces the human supervisors and improves the surveillance efficiency with the computer vision techniques.

  • PDF

Connected-component Labeling using Contour Following (윤곽추적 영역채색 기법)

  • 심재창;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.95-107
    • /
    • 1994
  • A new efficient contour following algorithm for connected-component labeling processing is proposed. The basic idea of the algorithm is that the total number of downward chain codes is the same as one of upward chain codes along the closed contour. If the chain code direction is upward, then region start mark is assigned at the chain code departure pixel and if the chain code is downward, then region end mark is assigned at the chain code arrival pixel. The proposed algorithm extracts directly the contour information from only the current direction information of chain. This makes the algorithm simple and fast and requires less memory with comparison to the conventional algorithms.The proposed contour following algorithm can be applied to the various kind of image processing such as region filling, restoration and region feature extraction.

  • PDF

Stereo Matching Based on Edge and Area Information (경계선 및 영역 정보를 이용한 스테레오 정합)

  • 한규필;김용석;하경훈;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1591-1602
    • /
    • 1995
  • A hybrid approach which includes edge- and region-based methods is considered. The modified non-linear Laplacian(MNL) filter is used for feature extraction. The matching algorithm has three steps which are edge, signed region, and residual region matching. At first, the edge points are matched using the sign and direction of edges. Then, the disparity is propagated from edge to inside region. A variable window is used to consider the local method which give accurate matched points and area-based method which can obtain full-resolution disparity map. In addition, a new relaxation algorithm for considering matching possibility derived from normalized error and regional continuity constraint is proposed to reduce the mismatched points. By the result of simulation for various images, this algorithm is insensitive to noise and gives full- resolution disparity map.

  • PDF

Automatic Extraction of Liver Region from Medical Images by Using an MFUnet

  • Vi, Vo Thi Tuong;Oh, A-Ran;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.59-70
    • /
    • 2020
  • This paper presents a fully automatic tool to recognize the liver region from CT images based on a deep learning model, namely Multiple Filter U-net, MFUnet. The advantages of both U-net and Multiple Filters were utilized to construct an autoencoder model, called MFUnet for segmenting the liver region from computed tomograph. The MFUnet architecture includes the autoencoding model which is used for regenerating the liver region, the backbone model for extracting features which is trained on ImageNet, and the predicting model used for liver segmentation. The LiTS dataset and Chaos dataset were used for the evaluation of our research. This result shows that the integration of Multiple Filter to U-net improves the performance of liver segmentation and it opens up many research directions in medical imaging processing field.