• Title/Summary/Keyword: Region Extraction

Search Result 1,020, Processing Time 0.025 seconds

An Improved Feature Extraction Technique of Asterias Amurensis using 6-Directional Scanning and Centers of Region (6-방향 스캐닝과 영역 중심점을 이용한 아무르불가사리의 개선된 특징 추출 기법)

  • Shin, Hyun-Deok;Chu, Ran-Heui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • Korea has developed coastal farming industry due to the environmental characteristics that its three sides are surrounded by sea. The damage of coastal farming industry caused by Asterias Amurensis with very strong reproductive rate and predaciousness has increased sharply every year. Moreover, Asterias Amurensis preys on living fish and shellfish and so the damage of fishermen is vern greater. In this paper, a method is proposed to extract effectively the features from the image of Asterias Amurensis acquired in the water. Because the proposed method extracts convex features using 6-directional scanning, it selects a fewer number of feature candidates than the conventional one. In addition, after selecting candidate concave points using the extracted convex features and centers of region, the final concave features are extracted. Due to the features of the starfish which lives in groups, individuals of the starfish in the input image are concentrated. Thus, it is significant to minimize the number of feature candidates extracted from the input image. The experimental results indicate an improvement of the proposed feature extraction method over the conventional one as evidenced by the fact that the feature extract was 88 % of the feature candidates.

The Slope Extraction and Compensation Based on Adaptive Edge Enhancement to Extract Scene Text Region (장면 텍스트 영역 추출을 위한 적응적 에지 강화 기반의 기울기 검출 및 보정)

  • Back, Jaegyung;Jang, Jaehyuk;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.777-785
    • /
    • 2017
  • In the modern real world, we can extract and recognize some texts to get a lot of information from the scene containing them, so the techniques for extracting and recognizing text areas from a scene are constantly evolving. They can be largely divided into texture-based method, connected component method, and mixture of both. Texture-based method finds and extracts text based on the fact that text and others have different values such as image color and brightness. Connected component method is determined by using the geometrical properties after making similar pixels adjacent to each pixel to the connection element. In this paper, we propose a method to adaptively change to improve the accuracy of text region extraction, detect and correct the slope of the image using edge and image segmentation. The method only extracts the exact area containing the text by correcting the slope of the image, so that the extracting rate is 15% more accurate than MSER and 10% more accurate than EEMSER.

Extraction of Effective Permittivity and Permeability of Periodic Metamaterial Cells (주기 구조 Metamaterial의 유효 유전율과 투자율 추출)

  • Lee, Dong-Hyun;Park, Wee-Sang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.60-68
    • /
    • 2008
  • The complex permittivity and permeability of various periodic metamaterial (MTM) cells are extracted by simulating a fictitious rectangular waveguide consisting of PEC and PMC walls. The shapes of the MTM cells include a thin wire (TW), a single split-ring resonator (SSRR), a double SRR (DSRR), a modified SRR, and a combined structure of the TW and the DSRR. The TW falls on a negative-$\varepsilon$/positive-$\mu$ region, the SRRs on a positive-$\varepsilon$/negative-$\mu$ region, and the combined structure on a negative-$\varepsilon$/negative-$\mu$ region. We also investigate how the permeability and permeability are affected by the dimension parameters of the MTM cells. Another extraction technique utilizing time domain signals is developed overcoming some limitations that the waveguide technique can not handle.

Skew Compensation and Text Extraction of The Traffic Sign in Natural Scenes (자연영상에서 교통 표지판의 기울기 보정 및 덱스트 추출)

  • Choi Gyu-Dam;Kim Sung-Dong;Choi Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.19-28
    • /
    • 2004
  • This paper shows how to compensate the skew from the traffic sign included in the natural image and extract the text. The research deals with the Process related to the array image. Ail the process comprises four steps. In the first fart we Perform the preprocessing and Canny edge extraction for the edge in the natural image. In the second pan we perform preprocessing and postprocessing for Hough Transform in order to extract the skewed angle. In the third part we remove the noise images and the complex lines, and then extract the candidate region using the features of the text. In the last part after performing the local binarization in the extracted candidate region, we demonstrate the text extraction by using the differences of the features which appeared between the tett and the non-text in order to select the unnecessary non-text. After carrying out an experiment with the natural image of 100 Pieces that includes the traffic sign. The research indicates a 82.54 percent extraction of the text and a 79.69 percent accuracy of the extraction, and this improved more accurate text extraction in comparison with the existing works such as the method using RLS(Run Length Smoothing) or Fourier Transform. Also this research shows a 94.5 percent extraction in respect of the extraction on the skewed angle. That improved a 26 percent, compared with the way used only Hough Transform. The research is applied to giving the information of the location regarding the walking aid system for the blind or the operation of a driverless vehicle

  • PDF

Performance Comparison and Analysis between Keypoints Extraction Algorithms using Drone Images (드론 영상을 이용한 특징점 추출 알고리즘 간의 성능 비교)

  • Lee, Chung Ho;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • Images taken using drones have been applied to fields that require rapid decision-making as they can quickly construct high-quality 3D spatial information for small regions. To construct spatial information based on drone images, it is necessary to determine the relationship between images by extracting keypoints between adjacent drone images and performing image matching. Therefore, in this study, three study regions photographed using a drone were selected: a region where parking lots and a lake coexisted, a downtown region with buildings, and a field region of natural terrain, and the performance of AKAZE (Accelerated-KAZE), BRISK (Binary Robust Invariant Scalable Keypoints), KAZE, ORB (Oriented FAST and Rotated BRIEF), SIFT (Scale Invariant Feature Transform), and SURF (Speeded Up Robust Features) algorithms were analyzed. The performance of the keypoints extraction algorithms was compared with the distribution of extracted keypoints, distribution of matched points, processing time, and matching accuracy. In the region where the parking lot and lake coexist, the processing speed of the BRISK algorithm was fast, and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the downtown region with buildings, the processing speed of the AKAZE algorithm was fast and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the field region of natural terrain, the keypoints and matched points of the SURF algorithm were evenly distributed throughout the image taken by drone, but the AKAZE algorithm showed the highest matching accuracy and processing speed.

Surgical Extraction of an Embolized Atrial Septal Defect Occluder Device into Pulmonary Artery after Percutaneous Closure

  • Yolcu, Mustafa;Kaygin, Mehmet Ali;Ipek, Emrah;Ulusoy, Fatih Rifat;Erkut, Bilgehan
    • Journal of Chest Surgery
    • /
    • v.46 no.2
    • /
    • pp.135-137
    • /
    • 2013
  • An atrial septal defect is the most common type of congenital heart disease among adults. Surgical repair or percutaneous closure of the defect is the treatment options. Even though percutaneous closure seems to be less risky than surgical repair, it may result in fatal complications like device embolism, cardiac perforation and tamponade. Herein we report a case of the embolism of a device into the pulmonary artery after one hour of percutaneous closure in which the embolized device was surgically removed and the defect was closed with a pericardial patch.

Face seqmentation using automatic searching algorithm of thresholding value and statistical projection analysis (자동 임계점 탐색 알고리즘과 통계적 투영 분석을 이용한 얼굴 분할)

  • 김장원;이흥복;김창석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.1874-1884
    • /
    • 1996
  • In this paper, we proposed automatic searching algorithm of thresholding value using multilevel thresholding for face segmentation from input bust image effectively. The proposed algorithm extracted the thresholding value of brightness that is formed background region, face region and hair region without illumination, background and face size from input image. The statistical projection analysis project the brightness of multilevel thresholding image into horizontal and vertical direction and decide the thresholding value of face. And the algorithm extracted elliptical type block of face from input image in order to reduce the back ground region and hair region efficiently. The proposed algorithm can reduce searching area of feature extraction and processing time for face recognication.

  • PDF

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

Individual Identification Using Ear Region Based on SIFT (SIFT 기반의 귀 영역을 이용한 개인 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In recent years, ear has emerged as a new biometric trait, because it has advantage of higher user acceptance than fingerprint and can be captured at remote distance in an indoor or outdoor environment. This paper proposes an individual identification method using ear region based on SIFT(shift invariant feature transform). Unlike most of the previous studies using rectangle shape for extracting a region of interest(ROI), this study sets an ROI as a flexible expanded region including ear. It also presents an effective extraction and matching method for SIFT keypoints. Experiments for evaluating the performance of the proposed method were performed on IITD public database. It showed correct identification rate of 98.89%, and it showed 98.44% with a deformed dataset of 20% occlusion. These results show that the proposed method is effective in ear recognition and robust to occlusion.

Real-Time Head Tracking using Adaptive Boosting in Surveillance (서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 2013
  • This paper proposes an effective method using Adaptive Boosting to track a person's head in complex background. By only one way to feature extraction methods are not sufficient for modeling a person's head. Therefore, the method proposed in this paper, several feature extraction methods for the accuracy of the detection head running at the same time. Feature Extraction for the imaging of the head was extracted using sub-region and Haar wavelet transform. Sub-region represents the local characteristics of the head, Haar wavelet transform can indicate the frequency characteristics of face. Therefore, if we use them to extract the features of face, effective modeling is possible. In the proposed method to track down the man's head from the input video in real time, we ues the results after learning Harr-wavelet characteristics of the three types using AdaBoosting algorithm. Originally the AdaBoosting algorithm, there is a very long learning time, if learning data was changes, and then it is need to be performed learning again. In order to overcome this shortcoming, in this research propose efficient method using cascade AdaBoosting. This method reduces the learning time for the imaging of the head, and can respond effectively to changes in the learning data. The proposed method generated classifier with excellent performance using less learning time and learning data. In addition, this method accurately detect and track head of person from a variety of head data in real-time video images.