• Title/Summary/Keyword: Region Detection

Search Result 2,122, Processing Time 0.026 seconds

Realtime Object Region Detection Robust to Vehicle Headlight (차량의 헤드라이트에 강인한 실시간 객체 영역 검출)

  • Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

Detection of Red Eye Region Using Redness and Local Characteristics (적색도와 국소적 특성을 이용한 적목 영역의 검출)

  • Kim, Tae-Woo;Yoo, Hyeon-Joong;Cho, Tae-Gyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1098-1103
    • /
    • 2007
  • This paper presents an automatic detection and removal method of red eye in a color image. The method detects initial red eye region based on redness and geometric feature, and extracts final red eye region considering local characteristics around the initial red eye region. Red eye fur the foal red eye region is removed by soft based removal method. In the experiments, the proposed method improved the red eye detection and removal results than that of Willamowski and Csurka[1].

  • PDF

Salient Object Detection via Adaptive Region Merging

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4386-4404
    • /
    • 2016
  • Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.

Real-Time Pupil Detection System Using PC Camera (PC 카메라를 이용한 실시간 동공 검출)

  • 조상규;황치규;황재정
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1184-1192
    • /
    • 2004
  • A real-time pupil detection system that detects the pupil movement from the real-time video data achieved by the visual light camera for general purpose personal computer is proposed. It is implemented with three steps; at first, face region is detected using the Haar-like feature detection scheme, and then eye region is detected within the face region using the template-based scheme. Finally, pupil movement is detected within the eye region by convolution of the horizontal and vertical histogram profiling and Gaussian filter. As results, we obtained more than 90% of the detection rate from 2375 simulation images and the data processing time is about 160㎳, that detects 7 times per second.

Detection of Pavement Region with Structural Patterns through Adaptive Multi-Seed Region Growing (적응적 다중 시드 영역 확장법을 이용한 구조적 패턴의 보도 영역 검출)

  • Weon, Sun-Hee;Joo, Sung-Il;Na, Hyeon-Suk;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.209-220
    • /
    • 2012
  • In this paper, we propose an adaptive pavement region detection method that is robust to changes of structural patterns in a natural scene. In order to segment out a pavement reliably, we propose two step approaches. We first detect the borderline of a pavement and separate out the candidate region of a pavement using VRays. The VRays are straight lines starting from a vanishing point. They split out the candidate region that includes the pavement in a radial shape. Once the candidate region is found, we next employ the adaptive multi-seed region growing(A-MSRG) method within the candidate region. The A-MSRG method segments out the pavement region very accurately by growing seed regions. The number of seed regions are to be determined adaptively depending on the encountered situation. We prove the effectiveness of our approach by comparing its performance against the performances of seed region growing(SRG) approach and multi-seed region growing(MSRG) approach in terms of the false detection rate.

Text Region Detection using Adaptive Character-Edge Map From Natural Image (자연영상에서 적응적 문자-에지 맵을 이용한 텍스트 영역 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1135-1140
    • /
    • 2007
  • This paper proposes an edge-based text region detection algorithm using the adaptive character-edge maps which are independent of the size of characters and the orientation of character string in natural images. First, labeled images are obtained from edge images and in order to search for characters, adaptive character-edge maps by way grammar are applied to labeled images. Next, selected label images are clustered as for distance of its neighbors. And then, text region candidates are obtained. Finally, text region candidates are verified by using the empirical rules and horizontal/vertical projection profiles based on the orientation of text region. As the results of experiments, a text region detection algorithm turned out to be robust in the matter of various character size, orientation, and the complexity of the background.

  • PDF

Skin Region Detection Using a Mean Shift Algorithm Based on the Histogram Approximation

  • Byun, Ki-Won;Nam, Ki-Gon;Ye, Soo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • In conventional, skin detection methods using for skin color definitions is based on prior knowledge. By experimentation, the threshold value for dividing the background from the skin region is determined subjectively. A drawback of such techniques is that their performance is dependent on a threshold value which is estimated from repeated experiments. To overcome this, the present paper introduces a skin region detection method. This method uses a histogram approximation based on the mean shift algorithm. This proposed method applies the mean shift procedure to a histogram of a skin map of the input image. It is generated by comparing with the standard skin colors in the $C_bC_r$ color space. It divides the background from the skin region by selecting the maximum value according to the brightness level. As the histogram has the form of a discontinuous function. It is accumulated according to the brightness values of the pixels. It is then, approximated by a Gaussian mixture model (GMM) using the Bezier curve technique. Thus, the proposed method detects the skin region using the mean shift procedure to determine a maximum value. Rather than using a manually selected threshold value, as in existing techniques this becomes the dividing point. Experiments confirm that the new procedure effectively detects the skin region.

Real-Time Landmark Detection using Fast Fourier Transform in Surveillance (서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출)

  • Kang, Sung-Kwan;Park, Yang-Jae;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.123-128
    • /
    • 2012
  • In this paper, we propose a landmark-detection system of object for more accurate object recognition. The landmark-detection system of object becomes divided into a learning stage and a detection stage. A learning stage is created an interest-region model to set up a search region of each landmark as pre-information necessary for a detection stage and is created a detector by each landmark to detect a landmark in a search region. A detection stage sets up a search region of each landmark in an input image with an interest-region model created in the learning stage. The proposed system uses Fast Fourier Transform to detect landmark, because the landmark-detection is fast. In addition, the system fails to track objects less likely. After we developed the proposed method was applied to environment video. As a result, the system that you want to track objects moving at an irregular rate, even if it was found that stable tracking. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

Face Region Detection Algorithm using Fuzzy Inference (퍼지추론을 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.773-780
    • /
    • 2009
  • This study proposed a face region detection algorithm using fuzzy inference of pixel hue and intensity. The proposed algorithm is composed of light compensate and face detection. The light compensation process performs calibration for the change of light. The face detection process evaluates similarity by generating membership functions using as feature parameters hue and intensity calculated from 20 skin color models. From the extracted face region candidate, the eyes were detected with element C of color model CMY, and the mouth was detected with element Q of color model YIQ, the face region was detected based on the knowledge of an ordinary face. The result of experiment are conducted with frontal face color images of face as input images, the method detected the face region regardless of the position and size of face images.

  • PDF