• Title/Summary/Keyword: Region Capacity Building

Search Result 74, Processing Time 0.023 seconds

The Policy of Industry-University Network Building and the Firm Networking: A Focus on the Daegu-Gyeongbuk Region (정부의 산.학.연 네트워크 형성 정책과 기업의 네트워킹 활동 - 대구.경북 지역을 중심으로 -)

  • Choi, Kyung-Hee
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.404-423
    • /
    • 2012
  • This study is aimed at exploring the impact of the characteristics of the firms on firm's networking. We develop a framework theorizing firm's networking according to sales, size, research facility, the percentage of R&D staff to total employees, the percentage of R&D investment to total sales, the number of the certification, the intention of attending seminars, the experience of participating in the government subsidy program. The results of the analysis show that research capacity, openness to a variety of information source, the experience of participating in the government subsidy program are significant in determining the firm's networking. The government needs to encourage the firms to improve their research capacity, and to train the coordinators to help the firms get higher openness to a variety of information source, use the government subsidy program.

  • PDF

Establishment of Climate Region by Recent 30-year Temperature Range in South Korea Area (남한지역의 최근 30년간 기온분포에 의한 기후권역 설정)

  • Ryu, Yeon-Soo;Park, Mi-Lan;Kim, Jin-Wook;Joo, Hye-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.376-382
    • /
    • 2011
  • Since the Industrial Revolution has caused global change by using of a fossil fuel, a reckless and growth-oriented development. A global mean temperature since 19th century has climbed up 0.4~$0.8^{\circ}C$. Our country, afterwards, global warming has increased the temperature every season. After The Kyoto Protocol regarding a greenhouse gas reduction goal took effect, be situations that decrease of greenhouse gas was acutely required. Therefore, interest of utilization of the new & renewable energy is increasing everyday. In advanced research, we shows that at first divided a country to nine range by natural geography, and second executed Meteorological data analysis of recent 30 years considering level of significance by nine range. The results of advanced research are that the similarities are low because there are the regions that temperature deviation of the similar climate regions is large in winter season, and there are not characteristics of clear discrimination of temperature. This study shows that at first divided a country to six range by temperature range, and second executed Meteorological data analysis of recent 30 years considering level of significance by six range. The results of this study are that in heating load calculation of building, periodic temperature data management is required because facility capacity and cost are affected greatly by outdoor temperature, and temperature by climate range needs consideration of pertinent area. Ground temperature was assumed of the weather in region, the ground and soil. Lastly, we were able to know that establishment of climate region by temperature range can be useful policy making and plans of design of the horticultural facilities and architectures.

  • PDF

A Study on the Optimization of Ventilation Fan Position and Flow Rate for a Turbine Building of a Power Plant (화력발전소 터빈 본관의 환풍기 위치 및 용량 최적화에 관한 연구)

  • Kim, T.K.;Ha, J.S.;Park, C.H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.86-93
    • /
    • 2016
  • The existence of high temperature equipment such as steam pipe, deaerator, steam storage tanks and main steam stop valves makes relatively higher workplace temperature in a power plant of the turbine building. In order to cool down the air temperature in the turbine building, the outside air flow with lower temperature passes through the window and the hotter air in the building is extracted to the outside by installing the ventilation fan on the roof. Nevertheless, higher temperature regions near the high temperature equipment still exist in the turbine building and additional fans for the temperature reduction in the higher temperature region should be examined for the optimal location and mass flow rate. The purpose of the present study is to suggest the optimized location and capacity of the additional ventilation fans for a comfortable working environment. From the present study, it has been elucidated that the additional ventilation fans might be located near the high temperature deaerator and it could reduce the mean temperature in the turbine building by $3.0^{\circ}C$ and the temperature near the deaerator could be reduced by $4.2^{\circ}C$.

An Analysis of the Relationship Between Resettlement and Housing Redevelopment Characteristics (주택재개발사업 특성이 재입주에 미치는 영향)

  • Ko Duk Kyun;Kim Hong-Kyu
    • Journal of the Korean housing association
    • /
    • v.16 no.3
    • /
    • pp.101-107
    • /
    • 2005
  • The reason that compulsory removals of a low-quality housing redevelopment such as involuntary or unintentional migration present a problem for urban communities is that whether involuntary movers adapt themselves to their new home has an influence on the urban communities that surround them. Moreover, involuntary emigrants have higher probability of choosing faulty residential areas than voluntary emigrants do. This gives rise to a problem of another residential migration for involuntary movers. In order to solve these problems, there is a need for a new housing policy that enables original residents to come back to their old community. However studies for resettlement had not conducted subjects about housing redevelopment characteristics which influences the involuntary movers directly. Instead personal microscopic characteristics such as statistics of resettlement, the moving distance, the reason of moving, improvement of living environment, had been main subjects of farmer studies. So the purpose of this study is to analyze an analysis of the relationship between resettlement and housing redevelopment characteristics. The data used in this study was obtained at 47 areas designated by Seoul (metropolis) since 1990 for redevelopment. Cluster Analysis Is used for dividing high rate of resettlement with low rate of resettlement and Regression Analysis is used for the analysis of the relationship between resettlement and housing redevelopment characteristics. The results of examining the effects of a redeveloped housing complex on returning residents at 47 areas designated by Seoul (metropolis) since 1990 fur redevelopment are as follows: First, A housing complex with a high returning rate (remove-in rate?) has no state/public land, unauthorized building owners who are in the low-income brackets, and few interested parties such as union members. This is the characteristic of a redeveloped housing complex with a short-period project span. On the contrary, a housing complex that has a low returning rate is crowded by state/public land, and numerous unauthorized building owners, and interested parties. Second, According to the linear regression analysis, among the factors that affect returning residents, 'physical properties(characteristics) of a region', 'population properties within a region', and 'properties of a project span' indicate a negative(-)influence whereas 'properties of a complex density' shows a positive(+) influence. In a nutshell, the more the physical properties, population properties, projectspan properties, the lower the returning rate and the more the complex density properties, the higher the returning rate. In detail, an area with many small land and new/large buildings, a high population, and a long project duration has a low returning rate of original residents while an area holding large capacity and buildings with many number of floors (multiple-storied building) has a high returning rate.

Evaluation the behavior of pre-fabricated moment connection with a new geometry of pyramidal end block under monotonic and cyclic loadings

  • Kazemi, Seyed Morteza;Sohrabi, Mohammad Reza;Kazemi, Hasan Haji
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.391-404
    • /
    • 2018
  • Researchers have been long studying new building implementation methods to improve the quality of construction, reduce the time of assembly, and increase productivity. One of these methods is the use of modular pre-fabricated structural forms that are composed of a beam, column, short column, pyramidal end block, and connection plates. In this study, a new geometry for the pyramidal end block was proposed that helps facilitate the assembly procedure. Since the proposed configuration affects the performance of this form of connection, its behavior was evaluated using finite element method. For this purpose, the connection was modeled in ABAQUS and then validated by comparing the outputs with experimental results. The research proceeded through analyzing 16 specimens under monotonic and cyclic loading. The results indicated that using the pyramidal end block not only makes the assembly process easier but also reduces the out-of-plane displacement of the short column webs and the vertical displacement of beam end. By choosing appropriate section properties for column and beam, the connection can bear a rotation up to 0.01 radians within its inelastic region and a total of 0.04 radians without any significant reduction in its bearing capacity.

Strengthening of non-seismically designed beam-column joints by ferrocement jackets with chamfers

  • Li, Bo;Lam, Eddie Siu-Shu;Cheng, Yuk-Kit;Wu, Bo;Wang, Ya-Yong
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1017-1038
    • /
    • 2015
  • This paper presents a strengthening method that involves the use of ferrocement jackets and chamfers to relocate plastic hinge for non-seismically designed reinforced concrete exterior beam-column joints. An experimental study was conducted to assess the effectiveness of the proposed strengthening method. Four half-scale beam-column joints, including one control specimen and three strengthened specimens, were prepared and tested under quasi-static cyclic loading. Strengthening schemes include ferrocement jackets with or without skeleton reinforcements and one or two chamfers. Experimental results have indicated that the proposed strengthening method is effective to move plastic hinge from the joint to the beam and enhance seismic performance of beam-column joints. Shear stress and distortion within the joint region are also reduced significantly in strengthened specimens. Skeleton reinforcements in ferrocement provide limited improvement, except on crack control. Specimen strengthened by ferrocement jackets with one chamfer exhibits slight decrease in peak strength and energy dissipation but with increase in ductility as compared with that of two chamfers. Finally, a method for estimating moment capacity at beam-column interface for strengthened specimen is developed. The proposed method gives reasonable prediction and can ensure formation of plastic hinge at predetermined location in the beam.

The Role of Rural Revitalization Support Centers in Facilitating Community Innovation in Korea (지역사회 혁신을 촉진하기 위한 농촌활성화지원센터의 역할)

  • Im, Sang Bong
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.1
    • /
    • pp.39-49
    • /
    • 2014
  • This study identifies the necessity and importance of innovation in rural communities and highlights the role of rural revitalization support centers in facilitating the diffusion of community innovation. The study provides a literature review and employs the survey method to verify the arguments. There is an urgent need for rural communities to be distinct, attractive, and competitive in the wake of globalization. It is clear that they must recognize the need to facilitate innovation under growing trends toward trade liberalization, environment-oriented life styles, diversified consumer needs, and a knowledge-based society. The results provide support for the legitimacy of establishing rural revitalization support centers to help community leaders and local stakeholders develop their communities. More specifically, rural communities should employ R&D outcomes from diverse fields and capacity building by community members, leaders, and local governments to foster sustainable growth by overcoming limitations in spatial access and resources. The results suggest that rural revitalization support centers can be established as intermediary organizations that can be operated to facilitate community innovation in rural development. In addition, these centers should play key roles such as empowering communities, facilitating region-specific rural development policies, motivating R&D applications for rural development, encouraging rural development networks. Further, close attention should be paid to facilitate mutual learning by expanding networks and interactions between these centers.

Earthquake behavior of M1 minaret of historical Sultan Ahmed Mosque (Blue Mosque)

  • Kocaturk, Turgut;Erdogan, Yildirim Serhat
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.539-558
    • /
    • 2016
  • Minarets are almost the inevitable part of Mosques in Islam and according to some, from a philosophical point of view, today they symbolize the spiritual elevation of man towards God. Due to slenderness, minarets are susceptible to earthquakes and wind loads. They are mostly built in a masonry style by using cut limestone blocks or occasionally by using bricks. In this study, one minaret (M1 Minaret) of one of the charmest mosques of Turkey, Sultan Ahmed Mosque, popularly known as Blue Mosque, built between 1609 and 1616 on the order of Sultan Ahmed by the architect Mehmet Agha is investigated under some registered earthquake loads. According to historical records, a great earthquake hit Istanbul and/or its close proximity approximately every 250 years. Ottomans tackled with the problem of building earthquake resistant, slender minarets by starting to use forged iron connectors with lead as a filler to fix them to the upper and lower and to adjacent stones instead of using traditional mortar only. Thus, the discrete stones are able to transfer tensile forces in some sense. This study investigates the contribution of lead to the energy absorption capacity of the minaret under extensive earthquakes occurred in the region. By using the software ANSYS/LS-DYNA in modelling and investigating the minaret nonlinearly, it is found out that under very big recorded earthquakes, the connectors of vertical cast iron-lead mechanism play very important role and help to keep the structure safe.

Analysis of Recent 30-year Climate Characteristics by Natural Geography (자연지형 구분에 의한 최근 30년간 기후특성 분석)

  • Ryu, Yeon-Soo;Park, Mi-Lan;Kim, Jin-Wook;Joo, Hye-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.256-262
    • /
    • 2011
  • Environmental pollution by Using of a fossil fuel, a reckless and growth-oriented development since the Industrial Revolution has caused global change of environment. An issue largest among this is a climate change. A global mean temperature since 19th century has climbed up $0.4{\sim}0.8^{\circ}C$. After The Kyoto Protocol regarding a greenhouse gas reduction goal took effect, be situations that decrease of greenhouse gas was acutely required. Interest of utilization of the new & renewable energy is increasing every day. This study shows that at first divided a country to nine range by natural geography, and second executed Meteorological data analysis of recent 30 years considering level of significance by nine range. The results of this study are that in heating load calculation of building, periodic temperature data management is required because facility capacity and cost are affected greatly by outdoor temperature, and temperature by climate range needs consideration of pertinent area. Lastly, ground temperature was assumed of the weather in region, the ground and soil.

  • PDF

Power Output in Various Types of Solar Panels in the Central Region of Korea (한국 중부 지역의 태양광 모듈 타입에 따른 발전량 특성)

  • Chang, Hyo Sik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Solar panels are modules made up of many cells, like the N-type monosilicon, P-type monosilicon, P-type multisilicon, amorphous thin-film silicon, and CIGS solar cells. An efficient photovoltaic (PV) power is important to use to determine what kind of cell types are used because residential solar systems receive attention. In this study, we used 3-type solar panels - such as N-type monosilicon, P-type monosilicon, and CIGS solar cells - to investigate what kind of solar panel on a house or building performs the best. PV systems were composed of 3-type solar panels on the roof with each ~1.8 kW nominal power. N-type monosilicon solar panel resulted in the best power generation when monitored. Capacity Utilization Factor (CUF) and Performance Ratio (PR) of the N-type Si solar panel were 14.6% and 75% respectively. In comparison, N-type monosilicon and CIGS solar panels showed higher performance in power generation than P-type monosilicon solar power with increasing solar irradiance.