• Title/Summary/Keyword: Regenerative system

Search Result 484, Processing Time 0.02 seconds

A Study on the Compact Regenerative Burner Development (compact 축열 버너 개발 연구)

  • Dong, Sang-Keun;Lee, Eun-Kyoung;Yang, Jae-Bok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.248-255
    • /
    • 2004
  • For the compactness of regenerative combustion, self regenerative combustion and embedding regenerator inside furnace are proposed. The Self Regenerative burner system was developed to enhance thermal efficiency and Low Nox emission. In the twin regenerative system, two burner heads are generally used for preheating and exhausting combustion mode. But self regenerative burner system use only single nozzle body for regenerative combustion. Also two kind of regenerator, internal and external type, were designed to operate conveniently in both large and small furnace. According to test result, the self regenerative combustion system gives strong internal exhaust gas recirculation that reduce NOx emission significantly. NOx was measured as 50ppm(5% O2, 1290C furnace temperature). Also it is found that the fuel saving rate due to the self regenerative burner system reach to 30-40%. Thus it can be concluded that self regenerative mild combustion system appears to provide a reasonable regenerative burner for compactness and high performance as compared with conventional twin regenerative burner system. Also in the RT Application , compact twin regenerative burner was developed with the help of embedding regenerator inside furnace.

  • PDF

Regenerative Energy Characteristics of Battery and Supercapacitor in a PEMFC Hybrid System

  • Kim, Byeong Heon;Wei, Qingsheng;Oh, Byeong Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.5-17
    • /
    • 2017
  • This study focuses on the application of the PEM Fuel Cell(PEMFC) hybrid system, which includes a regenerative braking system with supercapacitor(SC) and battery. The purpose of this study is to evaluate the characteristics of regenerative energy and to propose solutions to increase regenerative energy via vehicle simulation. To achieve this target, we set the rated motor speed to 3,000/2,500/2,000 rpm. Because the flywheel is directly connected to the motor, the generator activates regenerative braking by using the rotational momentum of the flywheel when the flywheel reaches the set speed after the motor stops. We could then measure the characteristics of regenerative braking of voltage, current, power, energy change, etc. Meanwhile, we calculate the storage efficiency of the SC or the battery. Our results show that the SC stores 18% of the regenerative energy, while battery stores 15% of the energy. Since the regenerative energy decreases with the decrease of the motor rotating speed that 5,027 J and 2,915 J are restored at 3,000 and 2,500 rpm, respectively. The experimental results also prove that regenerative braking energy is able to be obtained if and only if the speed of flywheel is over 2,500 PRM, and the efficiency of the system can be further improved.

A Study on Regenerative Cooling System for Thrust Chamber Protection (연소실 보호를 위한 재생냉각 방식 연구)

  • Park, Hee-Ho;Kim, Jung-Hun;Choi, Young-Hwan;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.78-85
    • /
    • 2005
  • The purpose of the study was to establish the design procedure and develop the program for designing regenerative cooling system. To obtain the design parameter necessary for the realization of regenerative cooling system, water-cooled regenerative cooling system was designed from suggested procedure. To compare experimental results with a present method of analytically predicting the heat transfer loads, $250kg_{f}$ experimental LRE with water-cooled regenerative cooling system was investigated. Based on the investigation, the good correction between the predicted and measured data was verified. Developed design program can be used to designing Kerosene- cooled regenerative cooling system. The basic experimental data and correlations obtained in this study for 250kgf experimental LRE with water-cooled regenerative cooling system can be directly applicable to the real LRE.

A Study On The Implementation Of Isolated Type Power Regenerative Converter (전원회생 절연형 컨버터의 실증을 위한 기본연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.507-511
    • /
    • 2019
  • The use of regenerative energy in AC drive systems has been an issue since the system became an industry standard in the 1990s. According to the quantity of the regenerative energy, the braking resistor in the case of low capacity was common. However the use of such low amount of energy is actively discussed, and the method of mounting the regenerative converter is becoming popular. In this paper, an isolated regenerative converter for reducing the circulating current which is mentioned as the biggest disadvantage of the conventional power regenerative converter system is proposed. In order to save energy, employing a power regenerative converter system for utilizing regenerative energy in an AC drive system is common. However due to the structure of the system, a circulating current is generated, which inevitably causes a decrease in efficiency. In this paper, an isolated regenerative power converter system is proposed to solve the circulating current and computer simulation to verify the possibility. The simulation results show that 20% of the circulating current of the conventional system does not appear in the proposed system, and the validity of the proposed system is confirmed.

A Study on the Effect of the Pressure Control of Cooperative Control System with Regenerative Brake for a Military SHEV (군용 직렬형 하이브리드 전기 차량을 위한 회생제동 협조제어 시스템의 압력제어 영향에 관한 연구)

  • Jeong, Soonkyu;Choi, Hyunseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.517-525
    • /
    • 2016
  • In this research, the effect of the pressure control of cooperative control system with regenerative brake for a military series hybrid-electric vehicle was studied. A cooperative control system with regenerative brake was developed to maximize regenerative energy from electric traction motors of the vehicle. However, the pressure control method of the system was modified to solve a time delay problem and it deteriorates the performance of the system. A Simulink model including the hybrid-electric components, the cooperative control system with regenerative brake, and the vehicle dynamics was developed and used to find a solution. The regenerative energy ratio with respect to the whole brake energy was increased in this research from less than 60 % to over 80 %.

A Study on a New Power Flow Method for Analysis of AC Electric Railway System and Improvement of Voltage Drop Using a STATCOM (교류 전기철도 시스템의 해석에 적합한 조류계산 기법 및 STATCOM을 적용한 전압 강하 개선 연구)

  • Baek, Jung-Myoung;Lee, Byung-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.669-676
    • /
    • 2007
  • This paper presents a new power flow method to analyze the AC electric railway system effectively in both cases of traction and regenerative braking of the trains. The algorithm to easily solve the power flow of the AC electric railway system with the trains of regenerative braking from the system without a train of regenerative braking is derived. Using this new power flow method, the voltage characteristics of a typical AC electric railway system is easily analyzed in both cases of traction and regenerative braking of the trains. We show that the presented method can be applied effectively in order to analyze the AT-fed AC electric railway system in both cases of traction and regenerative braking of the trains. A STATCOM(Static Synchronous Compensator) is applied to the system in order to improve the voltage drop problem and this case is also analyzed to show the effect of STATCOM.

A study of Performance Requirement for Energy-Regenerative Lift (회생에너지 재생시스템을 적용한 건설용 리프트의 요구성능 도출)

  • Won, Myeungkyun;Lim, Hyunsu;Lee, Myungdo;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.205-206
    • /
    • 2011
  • Various studies on energy saving for construction sites have been carried out and some construction machines using motors have installed regenerative systems such as elevators and excavators. The construction lift also uses motors and generates more regenerative energy when the lifts descend because lifts convey many construction materials and workers. For this reason, it is possible to apply the regenerative system to the construction lift. However, if the system is applied without considering the lift's characteristics, the new development would fail; we therefore need to propose a performance requirement. Thus, the purpose of this study is to propose a performance requirement for the energy-regenerative lift prior to developing the energy-regenerative lift.

  • PDF

Cycle Simulation of a Desiccant Cooling System with a Regenerative Evaporative Cooler (재생형 증발식 냉각기를 이용한 제습 냉방시스템의 성능해석)

  • 이재완;이대영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.566-573
    • /
    • 2004
  • Comparison of the cooling performance is provided between the desiccant cool-ing systems incorporating a direct evaporative cooler and a regenerative evaporative cooler, respectively. Cycle simulation is conducted, and the cooling capacity and COP are evaluated at various temperature and humidity conditions. The COP of the system with a regenerative evaporative cooler and the regeneration temperature of 6$0^{\circ}C$ is evaluated 0.65 at the outdoor air condition of 35$^{\circ}C$ and 40% RH. This value is found about 3.4 times larger than that of the system with a direct evaporative cooler. Furthermore, incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in a desiccant dehumidifier that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners.

The Effect of Regenerative Energy Storage System on Stabilization of Electro-Pneumatic Braking Blending (회생에너지 저장시스템이 제동 브랜딩 안정화에 미치는 영향)

  • Kim, Kyu-Joong;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.15-21
    • /
    • 2010
  • Regenerative Energy Storage System(ESS) is a system that saves regenerative energy which generated instantly in the regenerative braking of Electric Multiple Unit(EMU) and disappear, and reuse the stored energy when EMU is in powering. Such system related to a research field of renewable energy which emerged concerning climate change and high oil prices. In the case of existing domestic rolling stock, about 25% to 30% of generated regenerative energy is restored to power source and is regarded as direct factor of raising catenary voltage. Such rapid change of catenary voltage is a cause of the failure of EMU's electronic equipment and lowering its reliability and is also a cause of train's fault occurred by tripping circuit breaker. In this paper, we intend to investigate the effect on blending characteristics of electric-braking and pneumatic-braking whether the regenerative energy storage system is used or not in urban transit DC 1,500V feeding system, while trains run. And we also intend to investigate its effect on stabilization of the blending, fluctuation of catenary voltage and various electric equipments.

Analysis of Fault Diagnosis of Regenerative Braking System for Fuel Cell Vehicle with EMB System (전기기계 브레이크가 적용된 연료전지 자동차의 회생제동 시스템의 고장해석)

  • Song, H.Y.;Choi, J.H.;Hwang, S.H.;Jeon, K.K.;Choi, S.J.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.8-13
    • /
    • 2012
  • Recently, researches about the eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. The regenerative braking system is a key technology to improve the vehicle energy utilization efficiency because it transforms the kinetic energy to the electric energy through the electric motor. This new braking system requires cooperative control between electric controlled brake and regenerative brake. Therefore, it is necessary to establish fault-diagnosis and fail-safe evaluation criteria to secure reliability of the regenerative braking system. In this paper, the failure types and causes in regenerative braking system were analyzed. The transient behavior characteristics were examined based on fault-diagnosis and fail-safe upon failure of regenerative braking system.