• Title/Summary/Keyword: Regenerative combustion

Search Result 116, Processing Time 0.025 seconds

Performance Analysis of the Experimental Liquid Rocket Engine using Liquefied Natural Gas as a Fuel (액화천연가스를 연료로 하는 시험용 액체로켓엔진의 성능해석)

  • 한풍규;이성웅;김경호;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.198-204
    • /
    • 2004
  • Using liquefied natural gas as a fuel, water, natural gas and liquefied natural gas-cooled firing tests were conducted. With the viewpoint of characteristic velocity, and specific impulse, the effect of OF mixture ratio and fuel inlet temperature into a combustion chamber were analyzed. OF mixture ratio and fuel inlet temperature into a combustion chamber have great influence on the performance. Characteristic velocity and theoretical specific impulse attain the maximum value at 0.72~0.75 and 0.75 of OF mixture ratio, respectively. Engine performance has a tendency to increase, proportional to fuel inlet temperature into a combustion chamber affected by the regenerative cooling.

  • PDF

Experimental Study on Kerosene Heat Transfer Characteristics Using Simulating Cooling Channels (모사 냉각채널을 이용한 케로신 열전달 특성에 대한 실험적 연구)

  • Lee, Bom;Lee, Wongoo;Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.643-646
    • /
    • 2017
  • In a liquid rocket engine using hydrocarbon fuels, cooling of the combustion chamber wall is necessary to prevent the combustion chamber wall from melting or structurally deforming due to high heat flux. Among the various methods, regenerative cooling, which uses fuel as a coolant and then injects it into the combustion process, has good performance. This study investigated the heat transfer characteristics of kerosene as a coolant by varying the copper cross-sectional area, the flow rate in the channel, and the current applied to the channel. Convective heat transfer occurred rapidly when the cross-sectional area of the copper channel was small and when the kerosene flow velocity was fast.

  • PDF

Review on Kerosene Fuel and Coking (케로신 연료 및 코킹에 대한 검토)

  • Lee, Junseo;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.81-124
    • /
    • 2020
  • In liquid oxygen/kerosene liquid rocket engines, kerosene is not only a propellant but also plays a role as a coolant to protect the combustion chamber wall from 3,000 K or more combustion gas. Since kerosene is exposed to high temperature passing through cooling channels, it may undergo heat-related chemical reactions leading to precipitation of carbon-rich solids. Such kerosene's thermal and fluidic characteristic test data are essential for the regeneratively cooled combustion chamber design. In this paper, we investigated foreign studies related to regenerative cooling channel and kerosene. Starting with general information on hydrocarbon fuels including kerosene, we attempted to systematically organize sedimentary phenomena on cooling channel walls, their causes/research results, coking test equipments/prevention methods, etc.

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

The combustion characteristics of catalytic combustor with preheating heat exchanger (예열용 열 교환식 촉매연소기의 연소특성에 관한 실험)

  • Yu, Sang-Phil;Seo, Yong-Suk;Song, Kwang-Sup;Ryu, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.79-84
    • /
    • 2002
  • The catalytic heat exchanger was designed which employs the regenerative preheating system of combustion air. The characteristics of the catalytic heat exchanger have been experimentally studied at the various operating parameters. The results showed that the mixture velocity did not affect significantly the performance of catalytic combustor whereas the preheating temperature of combustion air affected significantly the conversion rate. The complete conversion was achieved in the catalyzed honeycomb at a preheating temperature of $370-390^{\circ}C$, a mixture velocity of 0.53 $^{\sim}$ 0.75 m/s and an equivalence ratio of 0.19 $^{\sim}$ 0.27. The heat exchange efficiency of the catalytic heat exchanger appeared to be about 75 % when the air of room temperature was used as a working fluid. The results showed that both the heat balance of the system and the mixture conditions determine its stable catalytic combustion.

  • PDF

Development of Combustion Test Facility for Liquid Rocket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험장치 개발)

  • Kim, Dong-Hwan;Lee, Seong-Ung;Yu, Byeong-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Combustion test facility for liquid rocket engine using kerosene and liquid oxygen has been developed for the purpose of cooling and performance study. Test engine of thrust under 1.0 KN can be evaluated, and the real combustion test ensures a good operation of the combustion test facility. Combustion test facility will be modified to supply natural gas and liquefied natural gas as fuel and to give a regenerative cooling test.

Development of a Thermal Analysis Program for a Regenerative Cooling Passage of Liquid Rocket and Simulation of Turbulent Heat Transfer (액체로켓의 재생냉각채널에 대한 열해석 프로그램의 개발 및 난류열유동 해석)

  • Park T. S
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.56-65
    • /
    • 2003
  • A numerical procedure for analyzing the heat transfer in a regenerative cooling passage of liquid rocket has been developed. The thermal analysis is based on the numerical model of Naraghi〔1〕. The thermodynamic and transport properties of the combustion gases are evaluated using the chemical equilibrium composition. The pressure and heat flux obtained by the isentropic relation are in good agreement with the result of Navier-Stokes equations. The effect of design parameters on heat transfer is addressed for the pressure loss and temperature variation. Also, their constraints in designing the cooling passage are recommended. Finally, in a heated rectangular duct, the effects of secondary flow on heat transfer are scrutinized by the nonlinear k- e -fu of Park et at.〔2〕.

Thermal flow analysis in heat regenerator with spheres (구형축열체를 이용한 축열기내 열유동 해석)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.359-364
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, were numerically analyzed to evaluate the heat transfer and pressure losses and to suggest the parameter for designing heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data conducted from Chugairo. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator length need to be linearly increased with inlet Reynolds number of exhaust gases. It is considered that inlet Reynolds number of exhaust gases should be introduced as a regenerator design parameter.

  • PDF

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling. (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (I))

  • Park, Kye-Seung;Kim, Yoo;Kim, Tae-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.54-61
    • /
    • 2003
  • This paper describes a general design procedure of regenerative cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that soot from combustion products have strong influence on the cooling characteristics of LRE.

Technical Analysis of Thermal Decomposition Characteristics of Liquid Hydrocarbon Fuels for a Regenerative Cooling System of Hypersonic Vehicles

  • Lee, Hyung Ju
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • A technological review and analysis were performed on thermal cracking of aviation hydrocarbon fuels that circulate as coolants in regenerative cooling systems of hypersonic flights. Liquid hydrocarbons decompose into low-carbon-number hydrocarbons when they absorb a considerable amount of energy at extremely high temperatures, and these thermal cracking behaviors are represented by heat sink capacity, conversion ratio, reaction products, and coking propensity. These parameters are closely interrelated, and thus, they must be considered for optimum performance in terms of the overall heat absorption in the regenerative cooling system and supersonic combustion in the scramjet engine.