DOI QR코드

DOI QR Code

Review on Kerosene Fuel and Coking

케로신 연료 및 코킹에 대한 검토

  • Lee, Junseo (School of Mechanical Engineering, Chungbuk National University) ;
  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University)
  • Received : 2020.01.29
  • Accepted : 2020.03.14
  • Published : 2020.06.30

Abstract

In liquid oxygen/kerosene liquid rocket engines, kerosene is not only a propellant but also plays a role as a coolant to protect the combustion chamber wall from 3,000 K or more combustion gas. Since kerosene is exposed to high temperature passing through cooling channels, it may undergo heat-related chemical reactions leading to precipitation of carbon-rich solids. Such kerosene's thermal and fluidic characteristic test data are essential for the regeneratively cooled combustion chamber design. In this paper, we investigated foreign studies related to regenerative cooling channel and kerosene. Starting with general information on hydrocarbon fuels including kerosene, we attempted to systematically organize sedimentary phenomena on cooling channel walls, their causes/research results, coking test equipments/prevention methods, etc.

액체산소/케로신 액체로켓엔진에서 케로신은 추진제일 뿐만 아니라 3,000 K 이상의 연소가스로부터 연소실 벽면을 보호하기 위한 냉각제 역할도 수행한다. 케로신은 냉각채널을 통과하면서 높은 온도에 노출되기 때문에 열과 관련한 화학반응이 일어나 탄소 과잉 고체가 침전되는 현상이 발생할 수 있다. 이러한 케로신의 열/유체 특성 시험 데이터는 재생냉각 연소실 설계에 필수적이다. 본 논문에서는 재생냉각채널과 케로신에 관련된 해외 연구를 조사하였다. 탄화수소 연료에 대한 전반적인 정보를 시작으로, 냉각채널 벽면에 발생하는 퇴적 현상, 이에 대한 원인/연구결과, 케로신 코킹 시험 장치/예방 방법 등을 체계적으로 정리하고자 하였다.

Keywords

Acknowledgement

본 논문은 과학기술정보통신부의 재원으로 한국연구재단의 지원(NRF-2013R1A5A1073861, NRF-2018M1A3A3A02065683, NRF-2019M1A3A1A02076962)을 받아서 수행되었으며, 이에 감사드립니다.

References

  1. Sutton, G.P., Rocket Propulsion Elements, 6th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 1992.
  2. Huzel, D.K. and Huang, D.H., Modern Engineering for Design of Liquid-Propellant Rocket Engines, 2nd ed., AIAA, Washington D.C., U.S.A., 1992.
  3. Hill, P.G. and Peterson, C.R., Mechanics and Thermodynamics of Propulsion, 2nd ed., Addison-Wesley Publishing Co., New York, N.Y., U.S.A., pp. 570-577, 1992.
  4. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 8th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., pp. 241-264, 2010.
  5. Edwards, T., "Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003," Journal of Propulsion and Power, Vol. 19, No. 6, pp. 1089-1107, 2003. https://doi.org/10.2514/2.6946
  6. Edwards, T., ""Kerosene" Fuels for Aerospace Propulsion-Composition and Properties," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, I.N., U.S.A., AIAA 2002-3874, Jul. 2002.
  7. Lefebvre, A.H. and Ballal, D.R., Gas Turbine Combustion Alternative Fuels and Emissions, 3rd ed., CRC Press, New York, N.Y., U.S.A., 2010.
  8. Speight, J.G., Handbook of Industrial Hydrocarbon Processes, Gulf Professional Publishing, Burlington, M.A., U.S.A., pp. 85-126, 2011.
  9. Edwards, T., "Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels," Combustion Science and Technology, Vol. 178, No. 1-3, pp. 307-334, 2006. https://doi.org/10.1080/00102200500294346
  10. Chevron Corporation, "Aviation Fuels Technical Review," 2006.
  11. Kim, M.C., Kim, Y.J. and Kim, J.S., "Effects of Temperature on the Coking Characteristics of Kerosene," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 2, pp. 46-52, 2019.
  12. Liang, K., Yang, B. and Zhang, Z., "Investigation of Heat Transfer and Coking Characteristics of Hydrocarbon Fuels," Journal of Propulsion and Power, Vol. 14, No. 5, pp. 789-796, 1998. https://doi.org/10.2514/2.5342
  13. Huang, H., Sobel, D.R. and Spadaccini, L.J., "Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling," 38th AIAA/ASME/ASE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, I.N., AIAA 2002-3871, Jul. 2002.
  14. Stiegemeier, B., Meyer, M. and Taghavi, R., "A Thermal Stability and Heat Transfer Investigation of Five Hydrocarbon Fuels: JP-7, JP-8, JP-8+100, JP-10, and RP-1," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, I.N., AIAA 2002-3873, Jul. 2002.
  15. Edwards, T. and Maurice, L.Q., "Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels," Journal of Propulsion and Power, Vol. 17, No. 2, pp. 461-466, 2001. https://doi.org/10.2514/2.5765
  16. Colket, M., Edwards, T., Williams, S., Cernansky, N.P., Miller, D.L., Egolfopoulos, F., Lindstedt, P., Seshadri, K., Dryer, F.L., Law, C.K., Friend, D., Lenhert, D.B., Pitsch, H., Sarofim, A., Smooke, M. and Tsang, W., "Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels," 45th Aerospace Sciences Meeting and Exhibit, Reno, N.V., U.S.A., AIAA 2007-770, Jan. 2007.
  17. Li, Z., Wang, H., Jing, K., Wang, L., Li, Y., Zhang, X. and Liu, G., "Kinetics and Modeling of Supercritical Pyrolysis of Endothermic Hydrocarbon Fuels in Regenerative Cooling Channels," Chemical Engineering Science, Vol. 207, pp. 202-214, 2019. https://doi.org/10.1016/j.ces.2019.06.019
  18. Burkhardt, H., Sippel, M., Herbertz, A. and Klevanski, J., "Kerosene vs Methane: A Propellant Tradeoff for Reusable Liquid Booster Stages," Journal of Spacecraft and Rockets, Vol. 41, No. 5, pp. 762-769, 2004. https://doi.org/10.2514/1.2672
  19. Klepikov, I.A., Katorgin, B.I. and Chvanov, V.K., "The New Generation of Rocket Engines, Operating by Ecologically Safe Propellant "Liquid Oxygen and Liquefied Natural Gas(Methane)"," Acta Astronautica, Vol. 41, No. 4-10, pp. 209-217, 1997. https://doi.org/10.1016/S0094-5765(98)00076-9
  20. Anand, R., "A Study Report on Coking of Kerosene," Liquid Propulsion System Center, Indian Institute of Space Science and Technology, 2009.
  21. Giovanetti, A.J., Spadaccini, L.J. and Szetela, E.J., "Deposit Formation and Heat-Transfer Characteristics of Hydrocarbon Rocket Fuels," Journal of Spacecraft and Rockets, Vol. 22, No. 5, pp. 574-580, 1985. https://doi.org/10.2514/3.25067
  22. Pei, X. and Hou, L., "Effect of Dissolved Oxygen Concentration on Coke Deposition of Kerosene," Fuel Processing Technology, Vol. 142, pp. 86-91, 2016. https://doi.org/10.1016/j.fuproc.2015.09.029
  23. Altin, O. and Eser, S., "Carbon Deposit Formation from Thermal Stressing of Petroleum Fuels," American Chemical Society Division of Fuel Chemistry, Vol. 49, No. 2, pp. 764-766. 2004.
  24. Pei, X., Hou, L. and Ren, Z., "Kinetic Modeling of Thermal Oxidation and Coking Deposition in Aviation Fuel," Energy & Fuels, Vol. 31, No. 2, pp. 1399-1405, 2017. https://doi.org/10.1021/acs.energyfuels.6b02869
  25. Rosenberg, S.D., Gage, M.L., Homer, G.D. and Franklin, J.E., "Hydrocarbon Fuel/Copper Combustion Chamber Liner Compatibility, Corrosion Prevention, and Refurbishment," Journal of Propulsion and Power, Vol. 8, No. 6, pp. 1200-1207, 1992. https://doi.org/10.2514/3.11462
  26. Jin, B., Jing, K., Liu, J., Zhang, X. and Liu, G., "Pyrolysis and Coking of Endothermic Hydrocarbon Fuel in Regenerative Cooling Channel under Different Pressures," Journal of Analytical and Applied Pyrolysis, Vol. 125, pp. 117-126, 2017. https://doi.org/10.1016/j.jaap.2017.04.010
  27. Zhong, F., Fan, X., Yu, F., Li, J. and Sung, C.J., "Thermal Cracking and Heat Sink Capacity of Aviation Kerosene under Supercritical Condition," Journal of Thermophysics and Heat Transfer, Vol. 25, No. 3, pp. 450-456, 2011. https://doi.org/10.2514/1.51399
  28. Roback, R., Szetela, E.J. and Spadaccini, L.J., "Deposit Formation in Hydrocarbon Fuels," Journal of Engineering for Power, Vol. 105, No. 1, pp. 59-65, 1983. https://doi.org/10.1115/1.3227399
  29. Zhong, F., Fan, X., Yu, F., Li, J. and Sung, C.J., "Heat Transfer of Aviation Kerosene at Supercritical Conditions," Journal of Thermophysics and Heat Transfer, Vol. 23, No. 3, pp. 543-550, 2009. https://doi.org/10.2514/1.41619
  30. Bates, R., Edwards, T. and Meyer, M., "Heat Transfer and Deposition Behavior of Hydrocarbon Rocket Fuels," 41st Aerospace Sciences Meeting and Exhibit, Reno, N.V., U.S.A., AIAA 2003-123, Jan. 2003.
  31. Edwards, T. and Zabarnick, S., "Supercritical Fuel Deposition Mechanisms," Industrial & Engineering Chemistry Research, Vol. 32, No. 12, pp. 3117-3122, 1993. https://doi.org/10.1021/ie00024a022
  32. Wang, N., Zhou, J., Pan, Y. and Wang, H., "Experimental Investigation on Flow Patterns of RP-3 Kerosene under Subcritical and Supercritical Pressures," Acta Astronautica, Vol. 94, No. 2, pp. 834-842, 2014. https://doi.org/10.1016/j.actaastro.2013.10.008
  33. Air B.P., "Handbook of Products," 2000.
  34. Liu, Z., Bi, Q., Guo, Y., Yan, J. and Yang, Z., "Convective Heat Transfer and Pressure Drop Characteristics of Near-Critical-Pressure Hydrocarbon Fuel in a Minichannel," Applied Thermal Engineering, Vol. 51, No. 1-2, pp. 1047-1054, 2013. https://doi.org/10.1016/j.applthermaleng.2012.10.029
  35. Cheng, X. and Schulenberg, T., "Heat Transfer at Supercritical Pressures. Literature Review and Application to an HPLWR," FZKA 6609, 2001.
  36. Pioro, I.L., Khartabil, H.F. and Duffey, R.B., "Heat Transfer to Supercritical Fluids Flowing in Channels-Empirical Correlations (Survey)," Nuclear engineering and design, Vol. 230, No. 1-3, pp. 69-91, 2004. https://doi.org/10.1016/j.nucengdes.2003.10.010
  37. Pioro, I.L. and Duffey, R.B., "Experimental Heat Transfer in Supercritical Water Flowing inside Channels (Survey)," Nuclear Engineering and Design, Vol. 235, No. 22, pp. 2407-2430, 2005. https://doi.org/10.1016/j.nucengdes.2005.05.034
  38. Banuti, D.T., "Crossing the Widom-line - Supercritical Pseudo-Boiling," The Journal of Supercritical Fluids, Vol. 98, pp. 12-16, 2015. https://doi.org/10.1016/j.supflu.2014.12.019
  39. Kim, S.K., Choi, H.S. and Kim, Y., "Thermodynamic Modeling Based on a Generalized Cubic Equation of State for Kerosene/LOx Rocket Combustion," Combustion and Flame, Vol. 159, No. 3, pp. 1351-1365, 2012. https://doi.org/10.1016/j.combustflame.2011.10.008
  40. "Organic Compound Nomenclature," retrieved 11 Oct. 2019 from http://new.kcsnet.or.kr/iupacname.
  41. Speybroeck, V.V., Hemelsoet, K., Minner, B., Marin, G.B. and Waroquier, M., "Modeling Elementary Reactions in Coke Formation from First Principles," Molecular Simulation, Vol. 33, No. 9-10, pp. 879-887, 2007. https://doi.org/10.1080/08927020701308315
  42. Wauters, S. and Marin, G.B., "Kinetic Modeling of Coke Formation during Steam Cracking," Industrial & Engineering Chemistry Research, Vol. 41, No. 10, pp. 2379-2391, 2002. https://doi.org/10.1021/ie010822k
  43. Gul, O., Rudnick, L.R. and Schobert, H.H., "The Effect of Chemical Composition of Coal-Based Jet Fuels on the Deposit Tendency and Morphology," Energy and Fuels, Vol. 20, No. 6, pp. 2478-2485, 2006. https://doi.org/10.1021/ef0503921
  44. Wickham, D.T., Alptekin, G.O., Engel, J.R. and Karpuk, M.E., "Additives to Reduce Coking in Endothermic Heat Exchangers," 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Los Angeles, C.A., U.S.A., AIAA 1999-2215, 1999.
  45. Liu, Z., Pan, H., Feng, S. and Bi. Q., "Dynamic Behaviors of Coking Process during Pyrolysis of China Aviation Kerosene RP-3," Applied Thermal Engineering, Vol. 91, pp. 408-416, 2015. https://doi.org/10.1016/j.applthermaleng.2015.08.033
  46. Fau, G., Gascoin, N. and Steelant, J., "Hydrocarbon Pyrolysis with a Methane Focus: A Review on the Catalytic Effect and the Coke Production," Journal of Analytical and Applied Pyrolysis, Vol. 108, pp. 1-11, 2014. https://doi.org/10.1016/j.jaap.2014.05.022
  47. Wang, H., Luo, Y., Gu, H., Li, H., Chen, T., Chen, J. and Wu, H., "Experimental Investigation on Heat Transfer and Pressure Drop of Kerosene at Supercritical Pressure in Square and Circular Tube with Artificial Roughness," Experimental Thermal and Fluid Science, Vol. 42, pp. 16-24, 2012. https://doi.org/10.1016/j.expthermflusci.2012.03.009
  48. Edwards, T. and Krieger, J., "The Thermal Stability of Fuels at 480℃ (900 °F): Effect of Test Time, Flow Rate, and Additives," ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, Houston, T.X., U.S.A., Jun. 1995.
  49. Huang, D., Ruan, B., Wu, X., Zhang, W., Xu, G., Tao, Z., Jiang, P., Ma, L. and Li, W., "Experimental Study on Heat Transfer of Aviation Kerosene in a Vertical Upward Tube at Supercritical Pressures," Chinese Journal of Chemical Engineering, Vol. 23, No. 2, pp. 425-434, 2015. https://doi.org/10.1016/j.cjche.2014.10.016
  50. Maas, E., Irvine, S., Bates, R. and Auyeung, T., "A High Heat Flux Facility Design for Testing of Advanced Hydrocarbon Fuel Thermal Stability," 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, N.V., U.S.A., AIAA 2005-363, Jan. 2005.
  51. Trejo, A., Trujillo, A., Galvan, M. and Choudhuri, A., "Experimental Investigation of Methane Convection and Boiling in Rocket Engine Cooling Channels," Journal of Thermophysics and Heat Transfer, Vol. 30, No. 4, pp. 937-945, 2016. https://doi.org/10.2514/1.T4883