• Title/Summary/Keyword: Regenerative Medicine

Search Result 392, Processing Time 0.028 seconds

Morphologic Change of Rat Liver Induced by Repeated Administration of Carbon Tetrachloride and Dimethylnitrosamine (사염화탄소와 Dimethylnitrosamine의 반복투여가 백서간의 형태학적 변화에 미치는 영향)

  • Lee, Tae-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.89-96
    • /
    • 1987
  • Carbon tetrachloride and Dimethylnitrosamine, both potent hepatotoxic agents, affect the hepatic lobules with fatty changes and central necrosis, and hemorrhagic necrosis. To study the effects on morphologic changes of the hepatic lobules in cases of single and repeated treatment of both hepatotoxins, sublethal doses of carbon tetrachloride, 0.4ml/kg, and dimethylnitrosamine, 40mg/kg of rats were given intraperitoneally single, twice and triple. With interval of 3 days, and the results were as follows : 1. The fatty changes and central necrosis of the hepatic lobules were milder and more quickly disappeared in the rats with twice or triple treatment than single administration of carbon tetrachloride, and regenerative changes of hepatic and sinusoidal cells achieved fater in the rats with repeated administration of carbon tetrachloride than those with single treatment. 2. The hemorrhagic necrosis of the hepatic lobules was not significantly influenced by the times of DMN treatment, but the hyperplastic changes showed more active to animals, with multiple administration of DMN.

  • PDF

Altered Cell to Cell Communication, Autophagy and Mitochondrial Dysfunction in a Model of Hepatocellular Carcinoma: Potential Protective Effects of Curcumin and Stem Cell Therapy

  • Tork, Ola M;Khaleel, Eman F;Abdelmaqsoud, Omnia M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8271-8279
    • /
    • 2016
  • Background: Hepato-carcinogenesis is multifaceted in its molecular aspects. Among the interplaying agents are altered gap junctions, the proteasome/autophagy system, and mitochondria. The present experimental study was designed to outline the roles of these players and to investigate the tumor suppressive effects of curcumin with or without mesenchymal stem cells (MSCs) in hepatocellular carcinoma (HCC). Materials and Methods: Adult female albino rats were divided into normal controls and animals with HCC induced by diethyl-nitrosamine (DENA) and $CCl_4$. Additional groups treated after HCC induction were: Cur/HCC which received curcumin; MSCs/HCC which received MSCs; and Cur+MSCs/HCC which received both curcumin and MSCs. For all groups there were histopathological examination and assessment of gene expression of connexin43 (Cx43), ubiquitin ligase-E3 (UCP-3), the autophagy marker LC3 and coenzyme-Q10 (Mito.Q10) mRNA by real time, reverse transcription-polymerase chain reaction, along with measurement of LC3II/LC3I ratio for estimation of autophagosome formation in the rat liver tissue. In addition, the serum levels of ALT, AST and alpha fetoprotein (AFP), together with the proinflammatory cytokines $TNF{\alpha}$ and IL-6, were determined in all groups. Results: Histopathological examination of liver tissue from animals which received DENA-$CCl_4$ only revealed the presence of anaplastic carcinoma cells and macro-regenerative nodules. Administration of curcumin, MSCs; each alone or combined into rats after induction of HCC improved the histopathological picture. This was accompanied by significant reduction in ${\alpha}$-fetoprotein together with proinflammatory cytokines and significant decrease of various liver enzymes, in addition to upregulation of Cx43, UCP-3, LC3 and Mito.Q10 mRNA. Conclusions: Improvement of Cx43 expression, nonapoptotic cell death and mitochondrial function can repress tumor growth in HCC. Administration of curcumin and/or MSCs have tumor suppressive effects as they can target these mechanisms. However, further research is still needed to verify their effectiveness.

Ultrasound-guided Platelet-rich Plasma Prolotherapy for Temporomandibular Disorders

  • Moon, Seong-Yong;Lee, Sun-Tae;Ryu, Ji-Won
    • Journal of Oral Medicine and Pain
    • /
    • v.39 no.4
    • /
    • pp.140-145
    • /
    • 2014
  • Purpose: Temporomandibular disorder (TMD) is one of the most common diseases causing chronic orofacial pain. Prolotherapy is called 'regenerative injection therapy' or 'growth factor stimulation injection', and it induces the functional reactivation of tissues such as ligaments and tendons. The aim of this study is to evaluate the efficacy of ultrasound-guided prolotherapy with platelet-rich plasma (PRP) for the patients who had the TMD symptoms, especially in temporomandibular joint (TMJ) pain, restricted mouth opening, and TMJ sound. Methods: Twenty-seven patients visited Chosun University Dental Hospital with the symptoms of pain, restricted mouth opening, and TMJ sound were included in this study. When the patients visited the hospital, we measured; the degree of pain, range of mouth opening (ROM), and TMJ sound, and grouped them according to their chief complaints. TMJ pain and ROM were measured both at the first visit and the fourth week after the PRP injection, and also evaluated the impact of the treatment on their daily activities. Results: After the treatment, the patients in the TMJ pain group showed some improvement (visual analogue scale [VAS] 5.6 to 3.6), and the patients in the restricted mouth opening group exhibited increased ROM (26 mm to 32 mm; p<0.05). On the other hand, the patients in the TMJ sound group had no improvement. Conclusions: PRP prolotherapy could be effective for the treatment of TMJ pain and restricted mouth opening. However, further studies are still necessary in terms of TMJ sound and longterm effect of PRP prolotherapy.

Reviews Value-in-Use of Specific Proteins Induced from Biological Resources (생물자원 유래 특이적 단백질의 이용가치에 관한 고찰)

  • Hyun, Dong-Yun;Kim, Ok-Tae;Bang, Kyong-Hwan;Kim, Young-Chang;Kang, Seung-Weon;Cha, Seon-Woo;Kim, Se-Yun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.3-3
    • /
    • 2010
  • 소나무에서 추출해낸 천연유기유황(Natural Sulfur)의 의학적 가치는 1972년 Jacob 박사와 Herschler 박사가 오래곤 과학대학에서 천연식이유황(Natural Sulfur/MSM)을 가지고 표피조직에 미치는 영향을 구명하면서 keratin 단백질에 대한 연구가 활성화 되기 시작하였다. 세포내 골격물질은 크게 형태와 조성에 따라서 actin microfilament, microtubule, 그리고 intermediate filament(IF)로 구분된다. keratin의 특성은 keratin intermediate family중에서 K17 IF가 새로운 기능을 나타내는데 피부세포의 성장에 핵심적인 조절 역할을 한다는 사실이 밝혀 지면서 Dr. Pierre A. Coulombe(The Johns Hopkins University School of Medicine)연구실은 브로컬리와 같은 십자화과 식물 등에 과량 존재하는 항산화 및 항암물질인 sulforaphane이 K17의 발현을 특이적으로 증가시킨다는 것을 알아내어 피부박리와 같은 피부손상을 기능적으로 복구시킬수 있음을 확인하였다. 현재는 수포성 표피박리증 환자군의 많은 부분을 차지하는 K14 돌연변이와 동일한 유전적 변형을 일으킨 생쥐모델을 이용한 약물 효과 검증과 전 임상단계의 인체실험을 함께 진행중에 있다. Mark E. Van Dyke 박사(Wake Forest Institute for Regenerative Medicine Medical Center)는 인간의 머리털에서 유래된 keratin으로 외상에 의한 신경 절단이나 압좌(압박손상)는 현재 다른 부위의 신경을 잘라 이식하거나 절단된 신경 양끝을 인공도관(conduit)으로 연결해 신경재생을 유도하는 미세수술을 시행하게 되는데, 신경재생을 유도하는 도관에 keratin을 주입하면 신경이식과 맞먹는 신경재생 성공률을 기대할 수 있다고 하였다. 앞으로는 동물성 keratin뿐만 아니라 식물성 keratin도 함께 연구할 필요가 있다. 동물성 keratin의 농업적 이용은 가금류 깃털의 keratin을 축출하여 친환경 육묘용 용기를 만드는데 있다. 이 용기는 자연조건에서 생분해될 수 있는 특성을 갖고 있다.

  • PDF

Systemic Amyloidosis in a Cocker Spaniel (Cocker spaniel 견에서 발생한 전신성 아밀로이드증)

  • Pak Son-Il;Kim Doo;Han Jeong-Hee
    • Journal of Veterinary Clinics
    • /
    • v.23 no.2
    • /
    • pp.186-189
    • /
    • 2006
  • A 7-month-old female Cocker spaniel dog was examined for chronic anemia. Based on information provided by local clinician the patient had had a 'flu-like' illness three weeks before submission of the sample, had a fever of $40.9^{\circ}C$, and had mild hepatomegaly. This dog had also history of weight loss, vomiting, anorexia, dehydration, lethargy, ascites, polyuria and polydipsia. A blood smear showed non-regenerative anemia. Thoracic radiograph showed irregular shadowing in the left mid-zone. Serum biochemical results showed a hypercalcemia, azotemia, hypercholesterolemia, hyperphosphatemia, hypoalbuminemia, and metabolic acidosis. Results of urinalysis showed proteinuria, slightly acidic with isosthenuria. Histopathologic examination of tissue sections revealed amyloid deposits in multiple sites including kidneys, liver and spleen.

Effects of Indirect Moxibustion on Skeletal Muscles in Mouse Model of Skeletal Muscle Adiposity (간접구 시술이 골격근 Adiposity 유발 쥐의 근육조직에 미치는 영향)

  • Lee, Ki Su;Hong, Kwon Eui
    • Journal of Acupuncture Research
    • /
    • v.31 no.1
    • /
    • pp.7-21
    • /
    • 2014
  • Objectives : To observe the regenerative effects of indirect moxibustion, a traditional Korean medical treatment on skeletal muscles using mouse model of skeletal muscle adiposity. Methods : Twenty seven ICR male mice were randomly assigned into Intact control(n=3), glycerol treatment together without moxibustion(n=12), and glycerol treatment together with moxibustion (n=12) groups. Mice of glycerol treatment groups were injected with 50 ${\mu}l$ DW(distilled water) containing 50 % of glycerol into the two tibialis anterior. After injection, moxibustion was applied at 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) acupoints three times per each session, every days for twelve days(total 12 treatments). Phospho-Erk1/2, Myostatin protein levels were analyzed by western blotting and immunofluo-rescence staining techniques for tissues of the tibialis anterior muscle. Smad, phospho-Smad were analyzed by immunofluorescence staining. Results : 1. Histological analysis of sections from injected TA muscles showed that glycerol induced rapidly muscle necrosis, with a maximum at day 3. 6 days and 9 days after injection, muscle was regenerating. 2. According to western blotting and immunofluorescence staining, phospho-Erk1/2 protein signals in glycerol treatment with moxibustion group were stronger compared to Intact and glycerol treatment without moxibustion group. 3. According to western blotting and immunofluorescence staining, myostatin protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 4. According to immunofluorescence staining, Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 5. According to immunofluorescence staining, phospho-Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. Conclusions : These results confirm that indirect moxibustion of 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) influences muscle regeneration in mouse models of skeletal muscle adiposity. Further discussion, and the establishment of moxibustion mechanism will prompt clinical application of moxibustion.

MicroRNAs in Autoimmune Sjögren's Syndrome

  • Cha, Seunghee;Mona, Mahmoud;Lee, Kyung Eun;Kim, Dong Hee;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.19.1-19.11
    • /
    • 2018
  • MicroRNAs (miRNAs), small non-coding RNAs, have been implicated in various diseases and cellular functions as microregulators of gene expression. Although the history of miRNA investigation in autoimmune $Sj{\ddot{o}}gren^{\prime}s$ syndrome (SjS) is fairly short, a substantial amount of data has already been accumulated. These findings clearly indicate potential clinical implications of miRNAs, such as autoantigen expression and autoantibody production, viral miRNAs regulating the calcium signaling pathway, and aberrant immune cell regulation and cytokine production. Research endeavors in the field are currently underway to select disease-specific diagnostic and prognostic biomarkers by utilizing different types of tissues or biological specimens of SjS patients. Various techniques for miRNA analysis with different stringencies have been applied, with the most recent one being next-generation sequencing. This review compiles and highlights differentially-expressed miRNAs in various samples collected from SjS patients and their potential implications in the pathogenesis of SjS. To facilitate the development of miRNA-targeted personalized therapy in the future, we urge more follow-up studies that confirm these findings and elucidate the immunopathological roles of differentially-expressed miRNAs. Furthermore, improved diagnostic criteria for the disease itself will minimize sampling errors in patient recruitment, preventing the generation of inconsistent data.

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park;Eun Kyeong Lee;Joowon Yim;Min Hoo Lee;Eojin Lee;Young-Sun Lee;Wonhyo Seo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.253-263
    • /
    • 2023
  • The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

Mettl14 mutation restrains liver regeneration by attenuating mitogens derived from non-parenchymal liver cells

  • Insook, Yang;Seung Yeon, Oh;Suin, Jang;Il Yong, Kim;You Me, Sung;Je Kyung, Seong
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.633-638
    • /
    • 2022
  • Liver regeneration is a well-known systemic homeostatic phenomenon. The N6-methyladenosine (m6A) modification pathway has been associated with liver regeneration and hepatocellular carcinoma. m6A methyltransferases, such as methyltransferase 3 (METTL3) and methyltransferase 14 (METTL14), are involved in the hepatocyte-specific-regenerative pathway. To illustrate the role of METTL14, secreted from non-parenchymal liver cells, in the initiation phase of liver regeneration, we performed 70% partial hepatectomy (PH) in Mettl14 heterozygous (HET) and wild-type (WT) mice. Next, we analyzed the ratio of liver weight to body weight and the expression of mitogenic stimulators derived from non-parenchymal liver cells. Furthermore, we evaluated the expression of cell cycle-related genes and the hepatocyte proliferation rate via MKI67-immunostaining. During regeneration after PH, the weight ratio was lower in Mettl14 HET mice compared to WT mice. The expressions of hepatocyte growth factor (HGF) and tumor necrosis factor (TNF)-α, mitogens derived from non-parenchymal liver cells that stimulate the cell cycle, as well as the expressions of cyclin B1 and D1, which regulate the cell cycle, and the number of MKI67-positive cells, which indicate proliferative hepatocyte in the late G1-M phase, were significantly reduced in Mettl14 HET mice 72 h after PH. Our findings demonstrate that global Mettl14 mutation may interrupt the homeostasis of liver regeneration after an acute injury like PH by restraining certain mitogens, such as HGF and TNF-α, derived from sinusoidal endothelial cells, stellate cells, and Kupffer cells. These results provide new insights into the role of METTL14 in the clinical treatment strategies of liver disease.

Bone Regenerative Effects of Biphasic Calcium Phosphate Collagen, Bone Morphogenetic Protein 2, Mesenchymal Stem Cells, and Platelet-Rich Plasma in an Equine Bone Defect Model

  • Eun-bee Lee;Hyunjung Park;Jong-pil Seo
    • Journal of Veterinary Clinics
    • /
    • v.40 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Fractures in the horse industry are challenging and a common cause of death in racehorses. To accelerate fracture healing, tissue engineering (TE) provides promising ways to regenerate bone tissues. This study aimed to evaluate the osteogenic effects of biphasic calcium phosphate collagen (BCPC) graft, bone morphogenetic protein 2 (BMP2), mesenchymal stem cell (MSC), and platelet-rich plasma (PRP) treatments in horses. Four thoroughbred horses were included in the study, and, in each horse, three cortical defects with a diameter of 5 mm and depth of 10 mm were formed in the third metacarpal bones (MC) and metatarsal bones (MT). The defects were randomly assigned to one of six treatment groups (saline, BCPC, BMP2, MSC, PRP, and control). Injections of saline, BMP2, PRP, or MSCs were made at 1, 3, and 5 weeks after defect surgery. Bone regeneration effects were assessed by radiography, quantitative computed tomography (QCT), micro-computed tomography (μCT), histopathological, and histomorphometric evaluation. The new bone ratio (%) in the histomorphometric evaluation was higher in the BMP2 group than in the control and saline groups. Radiographic and QCT values were significantly higher in the BCPC groups than in the other groups. QCT values of the BMP2 group were significantly higher than in the control and saline groups. The present study demonstrated that BCPC grafts were biologically safe and showed osteoconductivity in horses and the repeated injections of BMP2 without a carrier can be simple and promising TE factors for treating horses with bone fractures.