• Title/Summary/Keyword: Regenerative Energy

Search Result 302, Processing Time 0.027 seconds

Performance Characteristics Analysis of Combined Cycle Using Regenerative Organic Rankine Cycle and LNG Cold Energy (LNG 냉열과 재생 유기 랭킨 사이클을 이용한 복합 사이클의 성능 특성 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;HAN, CHUL HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.234-241
    • /
    • 2020
  • This paper presents a thermodynamic performance analysis of a combined cycle consisting of regenerative organic Rankine cycle (ORC) and liquefied natural gas (LNG) Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the system performances are analyzed in the aspect of thermodynamics. The effects of the turbine inlet pressure and the working fluid on the system performance such as the mass flow rates, heat transfers at heat exchangers, power productions at turbines, and thermal efficiency are systematically investigated. The results show that the thermodynamic performance of ORC such as net power production and thermal efficiency can be significantly improved by the regenerative ORC and the LNG cold energy.

Capacity Design of Accumulator in Hydraulic Regenerative Brake System (유압 재생 브레이크 시스템의 축압기 용량 설계)

  • 이재구;이재천;김정현;김성동
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.104-113
    • /
    • 2002
  • An accumulator in hydraulic systems stores kinetic energy during braking action and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous far ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume far ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formu1a. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective far decision of accumulator volume in ERBS.

AC Regeneratable Battery Charging and Discharging Test System (AC 회생이 가능한 배터리 충·방전 테스트 시스템)

  • Kim, Jun-Gu;Youn, Sun-Jae;Kim, Jae-Hyung;Won, Chung-Yuen;Na, Jong-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • In this paper, 15[kW] AC regenerative system for battery charging and discharging test is proposed. The regenerative system is able to regenerate surplus energy to the grid in discharging mode, and the inverter of the system can be operated as a converter to compensate scarce energy in charging mode. In case of the conventional DC charging and discharging system, the regenerative energy is consumed by a resistor. However, as the proposed system regenerates the surplus energy to the grid through using DC-AC inverter, the energy saving effect can be achieved. In this paper, 15[kW] battery charging and discharging system is developed, and the validity of the system is verified through simulation and experimental results.

Experimental Evaluation of an Energy Storage Device with High Rotaional Speed (에너지 저장용 고속회전기의 실험적 평가)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.193-196
    • /
    • 2014
  • Experimantal evaluation of an energy storage device with high rotational speed to store regenerative energy which might be generated during the braking period of the trains is presented. The proposed ESS is small scale model and has 5kW output power, high rotational speed. In general railway trains generate regenerative energy for 10-20 sec when the train brakes and also high traction energy is needed for very short moment (10 sec) when the train increases the traction force. Considering such characteristics of the railway system energy storage device for the railway should have very fast response property. Among the various energy storage devices flywheel energy storage system has the fastest response property, which means that flywheel ESS is the most suitable for the railway system.

  • PDF

A Numerical Analysis of the Amplification Properties of the Regenerative Amplifier (재생증폭기의 증폭특성에 관한 수치해석)

  • 김남희;김병태
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.67-73
    • /
    • 1994
  • The simulation code was developed to analyze the amplification properties of the regenerative amplifier, such as gain narrowing, nonlinear effect, and energy saturation. To reduce gain narrowing in the regenerative amplifier, the input pulse with a symmetrical shape and the same center wavelength of the active medium should be amplified in the active medium with a broad fluorescence linewidth. In this respect, Ti:Sapphire with a low nonlinear refractive index, a high saturation fluence, and a broad fluorescence linewidth is the most appropriate medium for the regenerative amplifier. The knowledge and the important parameters were acquired for the optimum design of the regenerative amplifier.

  • PDF

The Development of Flameless Regenerative Burner for the Industrial Furnaces (공업로용 무화염식 축열버너의 국산화 개발)

  • Kim, Won-Bae;Yang, Je-Bok
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.27-33
    • /
    • 2010
  • Recently, much attention has been paid to utilizing highly preheated air up to $1,000^{\circ}C$ through waste gas in industrial furnaces. The regenerative burner technology has shown to provide significant reduction in energy consumption (up to 60%), downsizing of the equipment (about 30%) and lower emissions (about 30%) while maintaining high thermal performance of the system since 2000. The object of this study is to develop the flameless regenerative burner for industrial furnaces based on the FLOX(Flameless Oxidation) principle and it has been designed and manufactured as pilot scale. Performance tests are experimentally done and their results are discussed. They showed 1) a very good uniformity in temperature distribution, 2) about 100 ppm in NOx at the temperature $1,300^{\circ}C$, 3) about 95% in temperature efficiency. Besides, the regenerative burner has advantage in easy maintenance and high usage rate of regenerator due to the separate and portable type of heat exchanger.

Development of Inverter for Regenerative Power and Test Equipment (직류급전시스템 회생용 인버터의 시험설비 구축 및 특성시험)

  • Kim, Joo-Rak;Han, Moon-Seob;Kim, Yong-Ki;Kim, Jung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.399-406
    • /
    • 2008
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. EMU in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system will be increased. This paper present the developed inverter for regenerative power and its test equipment. Test result of developed inverter is presented.

  • PDF

Power Regenerating Drive of a Induction Motor by Field Acceleration Method (자계가속법에 의한 유도 전동기의 전력회생 구동)

  • Hong, Soon-Ill;Hong, Jeng-Pyo;Jung, Seoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • This paper presents a solution that an analytical model for an induction motor and the formula of regenerative power and instantaneous torque are derived. based on the spiral vector. The torque is controlled linearly through variations of the slip angular velocity, based on the field acceleration method (FAM). And also PWM inverter fed induction motor drives is schemed to be easily a regenerative drive. The voltage source inverter fed induction motor drives that regenerative power occurs with back current type is presented, to easily controlled the feedback power and to proper the adaption of energy shaving drives. The experimental tests verify the performance of the FAM, proving that food behavior of the drive is achieved in the transient and steady state operating condition, and are discussed to save the power that regenerative power is measured at the operating acceleration or deceleration of servo system.

A Result of the Field Test for Regenerative Inverter (직류급전시스템의 에너지회생장치 적용을 위한 실계통 부설 시험)

  • Kim, Joo-Rak;Han, Moon-Seob;Jang, Dong-Uk;Kim, Jung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.286-293
    • /
    • 2008
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. EMU in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMC on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system will be increased. This paper present the developed inverter for regenerative power and its field test. Test result of developed inverter is presented.

  • PDF

A Study on the Efficiency of Energy Storage System Applied to the Power Traction System of DC Electric Railway (직류전기철도에서 운행시격에 따른 에너지저장장치의 효율에 관한 연구)

  • Kim, Sung-Dae;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.754-760
    • /
    • 2011
  • In the DC traction system, a large load current of electric railcar leads to a voltage drop when a vehicle starts, and the regenerative power generated by brake system increases the catenary voltage. To minimize the voltage fluctuation during the train operation and make use of the regenerative power, several types of energy storage systems are being studied. The energy storage system that is being recently introduced consists of the supercapacitors for energy storage and the bi-direction DC/DC converter for charge/discharge control. The efficiency of the energy storage system depends on the train operation pattern. In this paper, the operation efficiency of the energy storage system was quantitatively analyzed via simulation study taking consideration of the train operation patterns. The simulation was conducted changing the headway of trains with the energy storage system that uses the bi-direction DC/DC converter and supercapacitor. The simulation results showed that the operation efficiency of the energy storage system increases as the headway increase.

  • PDF