• Title/Summary/Keyword: Regeneration temperature

Search Result 328, Processing Time 0.025 seconds

Effect of Pressure on HCl Absorption Behaviors of a K-based Absorbent in the Fixed Bed Reactor (고정층 반응기에서 K-계열 흡수제의 압력에 따른 HCl 흡수 거동 연구)

  • Kim, Jae-Young;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Baek, Jeom-In;Park, Yeong Seong;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this study, the hydrogen chloride removal using K-based dry sorbents ($K_2CO_3/Al_2O_3$, KEPRI, Korea) was studied with varying the pressure in a fixed bed reactor (15 cm tall bed with 0.5 cm I.d.). Working temperature was $400^{\circ}C$ and feed gas concentration was 750 ppm (HCl vol%, $N_2$ balance). The chloride sorption capacity of sorbent increases with increasing pressure (1, 5, 10, 15 and 20 bar). Also, after forming KCl crystal by reaction with $K_2CO_3$ and HCl, owing to the strong bonding energy, sorbent regeneration was practically impossible. Its optical, physical and chemical characterizations were evaluated by SEM, EDAX, BET, TGA and XRD. At $400^{\circ}C$ and 20 bar condition, working condition for the dehalogenation process after gasification, K-based dry sorbent showed high HCl sorption capacity and HCl/$N_2$ separation performances comparing with Ca-based and Mg-based dry sorbents.

Qualitative Changes in Grafted Cactus Cultivars during Simulated Transportation (모의운송시 접목선인장의 품종별 품질변화)

  • Yoon, Jung-Han;Song, Jong-Eun;Byoun, Hye-Jin;Park, Ju-Hyun;Kim, Young-Ho;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.575-582
    • /
    • 2011
  • This experiment was conducted to study the qualitative changes of grafted cactus after harvest and to examine the decomposition characteristics of pathogenic fungi which occurs or grows during the simulated shipping period. Plant materials with four varieties of Gymnocalycium mihanovichii var. friedrichii including, 'Hukwang', 'Huhong', 'Hwangwol', 'Yeunhwa' and two varieties of Chamaecereus silvestrii f. variegate such as 'Goldcrown' and 'Yellowcrown' were used. During the simulated shipping period, the fresh-weight, bulb diameter, carbon dioxide emission rate, and decomposition rate were observed. The regeneration rate and decomposition rate were observed for the grafted cactuses that were placed in a greenhouse environment with a temperature of $28{\pm}12^{\circ}C$ and humidity of $36{\pm}15.3%$ after 40 days of simulated shipping. There were reductions in the fresh-weight and bulb diameter in every variety as time passed while the carbon dioxide emission rate showed no meaningful difference by each variety. Furthermore, the decomposition rate in the scion was higher than in the stock. According to the analysis of pathogenic fungi by decomposition characteristics, Alternaria sp., Cladosporium sp., Colletotrichum sp., Fusarium sp., Penicillium sp. in G. mihanovichii var. friedrichii were found and Alternaria sp., Bipolaris sp., Cladospoirum sp. in C. silvestrii f. variegate were identified. Therefore, to maintain and improve the quality of grafted cactus, it is necessary to analyze the factors of decomposition from the time of harvest until the point of export and develop a process technology to minimize the decomposition rate.

Effect of Electron-beam Irradiaton on the Artificial Bone Substitutes Composed of Hydroxyapatite and Tricalcium Phosphate Mixtures with Type I Collagen (수산화인회석과 인산삼칼슘 및 1형 콜라젠 혼합골의 전자빔 조사 효과)

  • Park, Jung Min;Kim, Soung Min;Kim, Min Keun;Park, Young Wook;Myoung, Hoon;Lee, Byung Cheol;Lee, Jong Ho;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.38-50
    • /
    • 2013
  • Purpose: The aim of this study is to evaluate the effect and potential of electron beam (E-beam) irradiation treatment to the synthetic bony mixtures composed of hydroxyapatite (HA; Bongros$^{(R)}$, Bio@ Co., Korea) and tricalcium phosphate (${\beta}$-TCP, Sigma-Aldrich Co., USA), mixed at various ratios and of type I collagen (Rat tail, BD Biosciences Co., Sweden) as an organic matrix. Methods: We used 1.0~2.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator (power 100 KW, pressure 115 kPa, temperature $-30{\sim}120^{\circ}C$, sensor sensitivity 0.1~1.2 mV/kPa, generating power sensitivity 44.75 mV/kPa, supply voltage $5{\pm}0.25$ V) with different irradiation dose, such as 1, 30 and 60 kGy. Structural changes in this synthetic bone material were studied in vitro, by scanning electron microscopy (SEM), elementary analysis and field emission scanning electron microscope (FE-SEM), attenuated total reflection (ATR), and electron spectroscopy for chemical analysis (ESCA). Results: The large particular size of HA was changed after E-beam irradiation, to which small particle of TCP was engaged with organic collagen components in SEM findings. Conclusion: The important new in vitro data to be applicable as the substitutes of artificial bone materials in dental and medical fields will be able to be summarized.

Pore Water Chemistry of Intertidal Mudflat Sediments: 1. Seasonal Variability of Nutrient Profiles (S, N, P) (조간대 퇴적물의 공극수 지구화학 : 1. 용존 영양염 (S, N, P)의 계절변화)

  • Lee, Chang-Bok;Kim, Dong-Seon
    • 한국해양학회지
    • /
    • v.25 no.1
    • /
    • pp.8-20
    • /
    • 1990
  • A series of pore water data were obtained during the different time over one year period between October 1987 and October 1988, from a site on a muddy intertidal flat, located in the Kyeong-gi Bay, west coast of Korea, The results have revealed that the tidal flat is an environment of active nutrient the subface supplied by the overlying seawater is almost completely removed from the pore water at depth of about 10 cm below the sediment surface. The nutrients such as ammonium and phosphate are produced through this process and subsequently accumulated in the pore water forming steep gradients near the sediment surface. Below the main sulfate redirection zone, a secondary peak of dissolved sulfate was often observed. Greal seasonal variation of the pore water nutrient profiles was observed, which was particularly clear in their maximum concentration as well as in their concentration gradient. The rate constants of sulfate reduction and nutrient regeneration, estimated by using a diagenetic model (Berner, 1980), differ by an order of magnitude between the summer and winter seasons. The difference in sediment temperature may account for most of the calculated variation. The C:N:P ratio, calculated from the pore water nutrient gradients also exhibits a slight seasonal difference. The organic matter being decomposed by sulfate reduction appears to be depleted in depleted in nitrogen, compared to the average marine organic matter.

  • PDF

Fabrication of PCL Scaffolds According to Various Pore Patterns Using Polymer Deposition System and Design of Experiments (폴리머 적층 시스템과 실험계획법을 이용한 다양한 공극 패턴에 따른 PCL 인공지지체의 제작 연구)

  • Sa, Min-Woo;Choi, Sun-Woong;Lee, Jae-Wook;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.645-653
    • /
    • 2017
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials in the manufacturing of scaffolds as a synthetic polymer having biodegradability and biocompatibility. The strut width in the fabrication of scaffolds is an important part of tissue regeneration in in-vitro and in-vivo experiments, because it affects not only the pore size but also the porosity. In this study, we used polymer deposition system (PDS) and design of experiments (DOE) to explore the optimal process conditions to achieve a systematic and efficient scaffold manufacturing process, using temperature, pressure, scan velocity, and nozzle tip height as the parameters for the experiments. The aim of this research was to fabricate a 3D PCL scaffold having a uniform strut width of $150{\mu}m$ using DOE; it was proved that the strut width was constant in all the experimental groups by fabricating the PCL scaffolds according to various pore patterns as well as one pore pattern.

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

Ecological Indicators of Forest Degradation after Forest Fire and Clear-cutting in the Siberian Larch (Larix sibirica) Stand of Mongolia

  • Park, Yeong Dae;Lee, Don Koo;Stanturf, John A.;Woo, Su Young;Zoyo, Damdinjav
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.609-617
    • /
    • 2009
  • This study was conducted to investigate ecological indicators of forest degradation after forest fire and clear-cutting in the Siberian larch (Larix sibirica Ledeb.) stand of Mongolia. The species abundance and biodiversity indices were higher in burned and clear-cut stands than those of reference stand, but boreal understory species, such as Vaccinium vitis-idaea, Pyrola incarnata, Linnea borealis and Maianthemum bifolium, completely disappeared and was replaced by sedge species, such as Carex duriuscula, C. lanceolata, C. pediformis, Poa attenuata and P. pratensis. During the research period, temperature increased by an average of $1.6^{\circ}C$ in burned stand and $1.7^{\circ}C$ in clear-cut stand compared to reference stand, but RH sharply decreased up to 15.7% in clear-cut stand. This result indicates that Larix sibirica stand became warmer and drier after forest fire and clear-cutting, and contributed to the abundance of sedge and grass species in the understory. Moreover, intense occupation of tall sedge grass after forest fire and clear-cutting had a vital role as obstacle on natural regeneration of Larix sibirica. The similarity of species composition between reference and burned stands was higher (73.6%) than between reference and clear-cut stands (63.8%). Soil moisture significantly decreased after forest fire and clear-cutting, and the extent of decrease was more severe in the clear-cut stand. The chemical properties at soil organic layer were significantly affected by forest fire and clear-cutting but not the mineral horizons. Inorganic nitrogen of the forest floor significantly decreased in the clear-cut stand ($1.1{\pm}0.4mg{\cdot}kg^{-1}$) than that of the burned ($4.5{\pm}2.3mg{\cdot}kg^{-1}$) and reference stands ($5.0{\pm}2.3mg{\cdot}kg^{-1}$). Available P of the forest floor significantly increased after fire, whereas it decreased after clear-cutting. These results indicate that existence of boreal understory vegetation, and changes in soil moisture and available P are distinct attributes applicable as ecological indicators for identifying forest degradation in Mongolia.

Effect of Desorption Pressure on Adsorption and Desorprtion Breakthrough Behaviors of Carbon Dioxide with Zeolite 3A, 4A, 5A, and 13X Pellets (제올라이트 3A, 4A, 5A, 13X 펠렛의 탈착 압력에 따른 이산화탄소 흡·탈착 파과특성)

  • Sim, Jungbo;Noh, Young-Kyoung;Park, Young Cheol;Kim, Hyunuk;Ryu, Ho-Jung;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.179-188
    • /
    • 2014
  • The effect of desorption pressure on $CO_2/N_2$ breakthrough behaviors for 4 different adsorbents was studied at a fixed bed. Zeolite 3A, 4A, 5A, and 13X pellets were used as adsorbents. Cyclic operations were executed with varying desorption pressure from vacuum (0 bar) to 3 bar while other conditions such as adsorption step pressure (3 bar), temperature (293 K), composition ($CO_2:N_2=10:90$vol%) and flow rate (400 ccm) were fixed at constant values. Each adsorption and desorption step was set as 80 min, which totaled up to 160 min per a cycle. 5 cycles with adsorption and desorption steps were run overall. After the experiment, breakthrough time, saturation time, and adsorption amount were measured and compared in order to find an optimum adsorbent and a proper operating condition for a post combustion $CO_2$ capture process.

Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter (해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성)

  • 현정호;이홍금;권개경
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.210-224
    • /
    • 2003
  • Sulfate reduction is a microbiological process which occurs ubiquitously in anaerobic marine environment. Sulfate reducing bacteria play a significant role in anaerobic decomposition of organic matter and regeneration of inorganic nutrients which supports the primary production in the water column (i.e., benthic-pelagic coupling) and, in special case, could be responsible for the harmful algal bloom in the coastal marine environment. Summary of the sulfate reduction rates reported in various marine sedimentary environments revealed that supply of organic substrates and presence of various electron acceptors (i.e., $O_2$, NO$_{3}$$^{[-10]}$ , Fe(III) and Mn(IV), etc.) for other aerobic and anaerobic respiration directly affect the sulfate reduction rate and relative significance of sulfate reduction in organic matter mineralization. Significance of temperature, macrophytes and bioturbation is discussed as factors controlling supply of organic substrates and distribution of electron acceptors. Finally, we suggest studies on the anaerobic microbiological processes associated with biogeochemical element cycles in the coastal environments of Korea where massive operation of organic enriched fish cage farm, frequent occurrence of toxic algal bloom and hypoxia and conservation of tidal flat are of major environmental issues.

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.