DOI QR코드

DOI QR Code

Effect of Pressure on HCl Absorption Behaviors of a K-based Absorbent in the Fixed Bed Reactor

고정층 반응기에서 K-계열 흡수제의 압력에 따른 HCl 흡수 거동 연구

  • Kim, Jae-Young (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Park, Young Cheol (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Jo, Sung-Ho (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Ryu, Ho-Jung (Greenhouse Gas Center, Korea Institute of Energy Research) ;
  • Baek, Jeom-In (Korea Electric Power Research Institute) ;
  • Park, Yeong Seong (Department of Environmental Engineering, Daejeon University) ;
  • Moon, Jong-Ho (Greenhouse Gas Center, Korea Institute of Energy Research)
  • 김재영 (한국에너지기술연구원 온실가스연구단) ;
  • 박영철 (한국에너지기술연구원 온실가스연구단) ;
  • 조성호 (한국에너지기술연구원 온실가스연구단) ;
  • 류호정 (한국에너지기술연구원 온실가스연구단) ;
  • 백점인 (한국전력공사 전력연구원) ;
  • 박영성 (대전대학교 환경공학과) ;
  • 문종호 (한국에너지기술연구원 온실가스연구단)
  • Received : 2013.05.07
  • Accepted : 2013.05.31
  • Published : 2013.06.28

Abstract

In this study, the hydrogen chloride removal using K-based dry sorbents ($K_2CO_3/Al_2O_3$, KEPRI, Korea) was studied with varying the pressure in a fixed bed reactor (15 cm tall bed with 0.5 cm I.d.). Working temperature was $400^{\circ}C$ and feed gas concentration was 750 ppm (HCl vol%, $N_2$ balance). The chloride sorption capacity of sorbent increases with increasing pressure (1, 5, 10, 15 and 20 bar). Also, after forming KCl crystal by reaction with $K_2CO_3$ and HCl, owing to the strong bonding energy, sorbent regeneration was practically impossible. Its optical, physical and chemical characterizations were evaluated by SEM, EDAX, BET, TGA and XRD. At $400^{\circ}C$ and 20 bar condition, working condition for the dehalogenation process after gasification, K-based dry sorbent showed high HCl sorption capacity and HCl/$N_2$ separation performances comparing with Ca-based and Mg-based dry sorbents.

본 연구에서는 고정층 반응기(높이 15 cm, 내경 0.5 cm)에서 K-계열 건식 흡수제($K_2CO_3/Al_2O_3$, 한국전력공사 전력연구원)를 이용하여 반응압력 변화에 따른 염화수소 흡수 실험을 수행하였다. 반응온도는 가스화 직후, 필터를 거쳐서 주입되는 것을 가정하여 $400^{\circ}C$로 설정하였으며, 반응기체 농도는 750 ppm HCl ($N_2$ balance)으로 설정하였다. 반응압력은 1, 5, 10, 15, 20 bar로 증가시켰다. 압력이 증가할수록 K-계열 흡수제의 흡수 성능이 증가하였다. 흡수제를 구성하고 있는 주요 물질인 $K_2CO_3$가 HCl 가스와 반응하여 KCl 결정을 형성하였으며, 강한 결합에너지로 인하여 흡수제의 재생이 실질적으로 불가능하였다. 이에 대한 광학적, 물리적, 화학적 특성을 SEM, EDX, BET, TGA, XRD를 이용하여 분석하였다. $400^{\circ}C$, 20 bar 조건(가스화 이후 탈할로겐 공정의 온도 및 압력조건)에서 $K_2CO_3$ 흡수제는 Ca 계열 및 Mg 계열의 흡수제에 비해 높은 HCl 흡수능 및 HCl/$N_2$ 분리 거동을 보였다.

Keywords

References

  1. Spath, P. L., and Dayton, D. C., "Preliminary Screening-technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-derived Syngas," NREL (National Renewable Energy Laboratory) Technical Report, 2003.
  2. Brown, R. C., Jerod, S., and Norton, G., "Development of Analytical Techniques and Scrubbing Options for Contaminants in Gasifier Streams Intended for Use in Fuel Cell," Chariton Valley Resource Conservation and Development and U.S. Department of Energy Biomass Power Program Final Report, 2, 2001.
  3. Twigg, M. V., and Spencer, M. S., "Deactivation of Supported Copper Metal Catalysts for Hydrogenation Reactions," Appl. Catal., A. General, 212, 161-174 (2001). https://doi.org/10.1016/S0926-860X(00)00854-1
  4. Horazak, D. A., Newby, R. A., Smeltzer, E. E., Slimane, R. B., Bush, P. V., Aderhold, J. L., and Bryan, B. G., "Novel Gas Cleaning/Conditioning for Integrated Gasification Combined Cycle," NETL (National Energy Technology Laboratory) Program Final Report, 24, 2005.
  5. Ohtsuka, Y., Tsubouchi, N., Kikuchi, T., and Hashimoto, H., "Recent Progress in Japan on Hot Gas Cleanup of Hydrogen Chloride," Hydrogen Sulfide and Ammonia in Coal-derived Fuel Gas. Powder Technol., 190, 340-347 (2009).
  6. Daewoo Engineering & Construction, "Residues Recycling Technology Development of Gasification & Melting System," Ministry of Environment, Final Report, August, 2008.
  7. Mura, G., and Lallai, A., "On the Kinetics of Dry Reaction between Calcium Oxide and Gas Hydrochloric Acid," Chem. Eng. Sci., 47, 2407-2411 (1992). https://doi.org/10.1016/0009-2509(92)87068-2
  8. Jozewicz, W., Chang, J. C. S., and Sedman, C. B., "Bench-scale Evaluation of Calcium Sorbents for Acid Gas Emission Control," Environ. Progress, 9(3), 137-142 (1990). https://doi.org/10.1002/ep.670090312
  9. Dou, B. L., Gao, J. S., Baek, S. W., and Sha, X. G., "High-Temperature HCl Removal with Sorbents in a Fixed-bed Reactor," Energy Fuels, 17, 874-878 (2003). https://doi.org/10.1021/ef010294p
  10. Krishnan, G. N., Gupta, R. P., Canizales, A., Sheluka, S., and Ayala, R., "High Temperature Gas Cleaning, Vol. 1, G. Braun Printconsult GmbH., Karlsruhe, 1996, pp. 405-414.
  11. Nunokawa, M., Kobayashi, M., and Shirai, H., "High Temperature Gas Cleaning," G. Braun Printconsult GmbH., Karlsruhe, 1999, pp. 684-695.
  12. Chyang, C. S., Han, Y.-L., and Zhong, Z.-C., "Study of HCl Absorption by CaO at High Temperature," Energy Fuels, 23, 3948-3953 (2009). https://doi.org/10.1021/ef900234p
  13. Coda, B., Aho, M., Berger, R., and Hein, K. R. G., "Behavior of Chlorine and Enrichment of Risky Elements in Bubbling Fluidized Bed Combustion of Biomass and Waste Assisted by Additives," Energy Fuels, 15, 680-690 (2001). https://doi.org/10.1021/ef000213+
  14. Weinell, C. E., Jensen, P. J., Dam-Johansen, K., and Livbjerg, H., "Hydrogen Chloride Reaction with Lime and Limestone: Kinetics and Sorption Capacity," Ind. Eng. Chem. Res., 31, 164-171 (1992). https://doi.org/10.1021/ie00001a023
  15. Partanen, J., Backman, P., Backman, R., and Hupa, M., "Absorption of HCl by Limestone in Hot Flue Gases, Part II: Importance of Calcium Hydroxy Chlorid," Fuel, 84, 1674-1684 (2005).
  16. Duo, W., Kirkby, N. F., Seville, J. P. K., Kiel, J. H. A., Bos, A., and Den, Uil, H., "Kinetics of HCl Reactions with Calcium and Sodium Sorbents for IGCC Fuel Gas Cleaning," Chem. Eng. Sci., 51, 2541-2546 (1996). https://doi.org/10.1016/0009-2509(96)00111-X
  17. Verdone, N., and De Filippis, P., "Reaction Kinetics of Hydrogen Chloride with Sodium Carbonate," Chem. Eng. Sci., 61, 7487-7496 (2006). https://doi.org/10.1016/j.ces.2006.08.023
  18. Dou, B., Gao, J., and Sha, X., "A Study on the Reaction Kinetics of HCl Removal from High-temperature Coal Gas," Fuel Process Technol., 72, 23-33 (2001). https://doi.org/10.1016/S0378-3820(01)00176-X
  19. Chen, D., Wang, X., Zhu, T., and Zhang, H., "HCl Dry Removal with Modified Ca-based Sorbent at Moderate to High Temperatures," J. Thermal Sci., 12(3), 283-289 (2003). https://doi.org/10.1007/s11630-003-0084-y
  20. Li, Y. L., Wu, Y. Q., and Gao, J. S., "Study on New Type of HCl-removal Agent for High-temperature Cleaning of Coal Gas," Ind. Eng. Chem. Res., 43(8), 1807-1811 (2004). https://doi.org/10.1021/ie034217o
  21. Dou, B. L., Pan, W. G., Ren, J. X., Chen, B. B., Hwang, J. J., and Yu, T. U., "Single and Combined Removal of HCl and Alkali Metal Vapor from High-temperature Gas by Solid Sorbents," Energy Fuels, 21(2), 1019-1023 (2007). https://doi.org/10.1021/ef060266c
  22. Kim, N. R., Yoo, Y. D., Kim, B. H., Kim, J. H., and Kim, H. T., "Study on the HCl Removal for High Temperature Cleaning of Waste-derived Syntheis Gas by Solid Sorbent," J. Korea Soc. Waste Mange., 28(7), 778-785 (2011).

Cited by

  1. The Absorption Breakthrough Characteristics of Hydrogen Chloride Gas Mixture on Potassium-Based Solid Sorbent at High Temperature and High Pressure vol.30, pp.3, 2016, https://doi.org/10.1021/acs.energyfuels.5b02473
  2. The Adsorption and Desorption Breakthrough Behavior of Hydrogen Chloride Gas Mixture on Zeolite 13X Pellet in a Fixed Bed Reactor vol.48, pp.3, 2013, https://doi.org/10.1252/jcej.14we183