Browse > Article
http://dx.doi.org/10.3795/KSME-A.2017.41.7.645

Fabrication of PCL Scaffolds According to Various Pore Patterns Using Polymer Deposition System and Design of Experiments  

Sa, Min-Woo (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
Choi, Sun-Woong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
Lee, Jae-Wook (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
Kim, Jong Young (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.41, no.7, 2017 , pp. 645-653 More about this Journal
Abstract
In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials in the manufacturing of scaffolds as a synthetic polymer having biodegradability and biocompatibility. The strut width in the fabrication of scaffolds is an important part of tissue regeneration in in-vitro and in-vivo experiments, because it affects not only the pore size but also the porosity. In this study, we used polymer deposition system (PDS) and design of experiments (DOE) to explore the optimal process conditions to achieve a systematic and efficient scaffold manufacturing process, using temperature, pressure, scan velocity, and nozzle tip height as the parameters for the experiments. The aim of this research was to fabricate a 3D PCL scaffold having a uniform strut width of $150{\mu}m$ using DOE; it was proved that the strut width was constant in all the experimental groups by fabricating the PCL scaffolds according to various pore patterns as well as one pore pattern.
Keywords
Polymer Deposition System; Polycaprolactone Scaffold; Pore Pattern; Design of Experiment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 The National Health Information Portal (http://health.mw.go.kr/) (Accessed 13 February 2017)
2 Vats, A., Tolley, N. S., Polak, J. M., et al., 2006, "Tissue Engineering and Developmental Biology: Going Biomimetic," Tissue Engineering, Vol. 12, No. 12, pp. 3265-3283.   DOI
3 Sa, M. W. and Kim, J. Y., 2015, "Comparison Analysis and Fabrication of Hollow Shaft Scaffolds using Polymer Deposition System," Tissue Engineering and Regenerative Medicine, Vol. 12, No. 1, pp. 46-52.   DOI
4 Jung, B. O., 2007, "The Development of Bioceramics for Biomedical Applications," Biomaterials Research, Vol. 11, No. 1, pp.12-19.
5 Iwan, Z., Hutmacher, D. W., Kim, C. T. and Swee, H. T., 2002, "Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications," Biomaterials, Vol. 23, pp. 1169-1185.   DOI
6 Rezwan, K., Chen, Q. Z., Blaker, J. J. and Boccaccini, A. R., 2006, "Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering," Biomaterials, Vol. 27, pp. 3413-3431.   DOI
7 Lindo, W., Dianying, J. and Jiandong, D., 2006, "A "Room-Temperature" Injection Molding/Particulate Leaching Approach for Fabrication of Biodegradable Three-dimensional Porous Scaffolds," Biomaterials, Vol. 27, pp. 185-191.   DOI
8 Hollister, SJ, 2005, "Porous Scaffold Design for Tissue Engineering," Nat. Mater, Vol. 7, pp. 518-524.
9 Yoon, S. N., Jun, J. Y. and Park, G. T., 2000, "A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds using Gas Foaming Slat as a Progen Additive," Journal of Biomedical Materials Research, Vol. 53, No. 1, pp. 1-7.   DOI
10 Deville, S., Saiz, E. and Tomsia, A. P., 2006, "Freeze Casting of Hydroxyapatite Scaffolds for Bone Tissue Engineering," Biomaterials, Vol. 27, No. 32, pp. 5480-5489.   DOI
11 Oh, S. H., Kang, S. G., Kim, E. S., Cho, S. H. and Lee, J. H., 2003, "Fabrication and Characterization of HYDROPHILIC Poly(Lactic-coglycolic Acid)/Poly (Vinyl Alcohol) Blend Cell Scaffolds by Melt-molding Particulate-leaching Method," Biomaterials, Vol. 22, pp. 4011-4021.
12 Son, S. K., 2014, "Study on Adhesion of Preosteoblast in Three Dimensional Polycaprolactone Scaffolds of Notch Type," in MD Theory, Department of Dental Science Graduate School of Chosun University.
13 Luong, N. D., Moon, I. S. and Nam, J. D., 2009, "A Solvent-assisted Compression Molded of Poly(Llactide)/ Hydroxyapatite Electrospun Fibers for Robust Engineered Scaffold Systems," Macromolecular Materials and Engineering, Vol. 294, No. 10, pp. 699-704.   DOI
14 Sa, M. W. and Kim, J. Y, 2013, "Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System," International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 4, pp. 649-655.   DOI
15 Kim, J. Y., Yoon, J. J., Park, E. K., Kim, S. Y. and Cho, D. W., 2009, "Fabrication of 3D PCL/PLGA/ TCP Bio-scaffold using Multi-head Deposition System and Design of Experiment," Journal of the Korean Society for Precision Engineering, Vol. 26, No. 1, pp. 146-154.
16 Langer, R. and Vacanti, J. P., 1993, "Tissue Engineering," Science, Vol. 260, No. 5110, pp. 920-926.   DOI
17 Sa, M. W. and Kim, J. Y., 2014, "Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %) /TCP (40 wt %) Scaffold," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 4, pp. 371-377.   DOI
18 Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. and Kraft, O., 2013, "High-strength Cellular Ceramic Composite with 3D Microarchitecture," Proceedings of the National Academy of Science, Vol. 111, No. 7, pp. 2453-2458.   DOI
19 Park, S. A., Lee, S. H. and Kim, W. D., 2011, "Fabrication of Porous Polycaprolactone/Hydroxyapatite (PCL/HA) Blend Scaffolds using a 3D Plotting System for Bone Tissue Engineering," Bioprocess and Biosystems Engineering, Vol. 34, pp. 505-513.   DOI
20 Lee, J. S., Cha, H. D., Shim, J. H., Jung, J. W., Kim, J. Y. and Cho, D. W., 2012, "Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication-based Scaffold for Bone Tissue Engineering, Journal of Biomedical Materials Research Part A, Vol. 100A, pp. 1846-1853.   DOI
21 Roohani-Esfahani, S. I., Newman, P. and Zreiqat, H., 2016, "Design and Fabrication of 3D Printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects," Scientific Reports, Vol. 6, No. 19468.