• 제목/요약/키워드: Regenerated cellulose fiber

검색결과 28건 처리시간 0.027초

Dyeing Properties of Bi-functional Reactive Dyes on a Novel Regenerated Cellulosic Fiber

  • Koh, Joonseok;Kim, Ik Soo;Kim, Sung Soo;Shim, Woo Sub;Kim, Jae Pil
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.44-51
    • /
    • 2004
  • Three bi-functional reactive dyes such as Bis(vinylsulphone) type, Bis(monochlorotriazine) type and Bis(mononicotinotriazine) type were applied to regular viscose rayon and new regenerated cellulosic fiber ($enVix^ⓡ$) which was prepared from cellulose acetate fiber by the hydrolysis of acetyl groups, and their dyeing properties and fastness properties were compared. enVix exhibited better dyeability and fastness than regular viscose rayon and these results were also explained by the differences in the supramolecular structure of these two fibers.

셀룰로오스 카보네이트 유도체로부터 재생 셀룰로오스 섬유의 제조(VI. 셀룰로오스 카보네이트의 치환도 및 용해도 평가) (Preparation of Regenerated Cellulose Fiber from the Cellulose Carbonate Derivative(VI. Degree of substitution and estimation of solubility))

  • 오상연;류동일;신윤숙;김환철;김학용;정용식
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.299-300
    • /
    • 2003
  • 본 연구자들은 이산화탄소($CO_2$)에 의한 셀룰로오스 카보네이트의 제조 및 재생 셀룰로오스 섬유 제조에 대한 몇몇 기초 연구성과를 발표한 바 있다[1, 2]. 이번 연구에서는 이산화탄소와의 반응을 통해 제조된 셀룰로오스 카보네이트 유도체의 치환도 변화에 따른 용해성을 평가하고 상그림표를 작성하였다. (중략)

  • PDF

셀룰로오스 트리아세테이트 액정용액으로 부터 고강도 셀룰로오스 섬유 제조에 관한 연구 (High Tenacity Cellulosic Fiber from Liquid Crystal Solution of Cellulose Triacetate)

  • 홍영근
    • 한국염색가공학회지
    • /
    • 제6권1호
    • /
    • pp.44-48
    • /
    • 1994
  • Cellulose triacetate(CTA) liquid crystal solutions obtained via dissolution of CTA in solvent mixture of triflucroacetic acid and methylene chloride were spun and saponified in various chemicals. Among chemicals, methanol/sodium hydroxide mixture endowed highest tenacity as well as modulus to regenerated cellulosic fiber and the fiber thereof showed Cell I or Cell IV morphology, or mixed morphology of Cell I and IV.

  • PDF

Dyeing and Fastness Properties of Vat Dyes on a Novel Regenerated Cellulosic Fiber

  • Lee Jung Jin;Shim Woo Sub;Kim Ik Soo;Kim Jae PH
    • Fibers and Polymers
    • /
    • 제6권3호
    • /
    • pp.244-249
    • /
    • 2005
  • enVix is a novel regenerated cellulosic fiber, which is prepared from cellulose diacetate fiber using environmentally friendly manufacturing process. Vat dyeing properties of the enVix were investigated and compared with those ofregular viscose rayon. The enVix exhibited better dyeability than viscose rayon. The colour yields of vat dyes on the enVix were found to be dependent on dyeing temperature as well as the amount of levelling agent and salt. Good build-up and good to excellent fastness properties were obtained on the en Vix fabric.

Printing Properties of Novel Regenerated Cellulosic Fibers

  • Kim, Ik-Soo;Koh, Joon-Seok;Han, Nam-Keun;Kim, Jae-Pil
    • Fibers and Polymers
    • /
    • 제5권3호
    • /
    • pp.219-224
    • /
    • 2004
  • The reactive printing properties of regular viscose rayon and a new regenerated cellulosic fiber (en Vix^{\textregistered}$) which was prepared from cellulose acetate fiber was investigated in a comparative manner. From the results, it was found that en Vix exhibited better printing properties than regular viscose rayon. It showed stable final color yields, irrespective of the amount of thickener, hence reproducibility of printing of en Vix is expected to be excellent. In addition, urea requirements were less for the printings on en Vix than for the corresponding printing on viscose rayon. Therefore, en Vix is also expected to reduce the amount of the urea which causes environmental problems in dyehouse effluent.

개질 셀룰로오즈 및 재생 셀룰로오즈 중공사막 혈액투석여과기의 설계 및 투석여과성능 (Design and Diafiltration Performance of Modified Cellulose and Regenerated Cellulose Hollow Fiber Membrane Hemodiafilter)

  • 김재진;박진용
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권3호
    • /
    • pp.221-226
    • /
    • 1993
  • Modules of hemodiafilter were manufactured by using MC-Hp200 and RC-HP4DOA hoi low fiber membranes of Enka Co. in a unique design. The performances of she hemodiafillers were evaluated by measuring the molecular weight cut-off, ultrafiltration rate, clearance, and pressure drop across the hemodiafiter. As a whole, the performances of the RC-HP400A module were superior to those of the MC-Hp200 module. The modules prepared in thls study showed the satisfactory performances for hemodiafiltration.

  • PDF

Preparation of Regenerated Cellulose Fiber via Carbonation. I. Carbonation and Dissolution in an Aqueous NaOH Solution

  • Oh, Sang Youn;Yoo, Dong Il;Shin, Younsook;Lee, Wha Seop;Jo, Seong Mu
    • Fibers and Polymers
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2002
  • Cellulose carbonate was prepared by the reaction of cellulose pulp and $CO_2$ with treatment reagents, such as aqueous $Zncl_2$ (20-40 wt%) solution, acetone or ethyl acetate, at -5-$0^{\circ}C$ and 30-40 bar ($CO_2$) for 2 hr. Among the treatment reagents, ethyl acetate was the most effective. Cellulose carbonate was dissolved in 10% sodium hydroxide solution containing zinc oxide up to 3 wt% at -5-$0^{\circ}C$. Intrinsic viscosities of raw cellulose and cellulose carbonate were measured with an Ubbelohde viscometer using 0.5 M cupriethylenediamine hydroxide (cuen) as a solvent at $20^{\circ}C$ according to ASTM D1795 method. The molecular weight of cellulose was rarely changed by carbonation. Solubility of cellulose carbonate was tested by optical microscopic observation, UV absorbance and viscosity measurement. Phase diagram of cellulose carbonate was obtained by combining the results of solubility evaluation. Maximum concentration of cellulose carbonate for soluble zone was increased with increasing zinc oxide content. Cellulose carbonate solution in good soluble zone was transparent and showed the lowest absorbance and the highest viscosity. The cellulose carbonate and its solution were stable in refrigerator (-$5^{\circ}C$ and atmospheric pressure).

셀룰로오스 재생 인조섬유의 화학개질에 관한 연구 (Chemical Modifications of Regenerated Cellulose Fiber)

  • 이문철;이명선
    • 한국염색가공학회지
    • /
    • 제11권1호
    • /
    • pp.48-60
    • /
    • 1999
  • In this paper, a new regenerated celluosic fiber, "Tencel" was treated with cellulase enzyme. Also Tencel fabrics were pretreated with NaOH and dyed with various reactive dyes, and subsequently finished with DMDHEU. $\Delta{E}^*_{ab}$ value was calculated by measuring color difference before and after wet abrasion test to rubbing. The fibrillation propensity was estimated on Tencel by means of weight loss, $\Delta{E}^*_{ab}$ value, and SEM observation. Weight loss of NaOH pretreated Tencel fabric is more lower than that of original fabric. The cellulase treatment decreased tensile strength but improved wet abrasion strength, wrinkle recovery, and bending properties. Tendency of fibrillation for Tencel fabric was reduced by NaOH-pretreatment, dyeing with multifunctional reactive dyes, and afterfinishing by DMDHEU.by DMDHEU.

  • PDF

미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(I) (Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending(I))

  • 정영진;안병재;김홍성;최해욱;이언필;이재호;김한도;박수민;김성동
    • 한국염색가공학회지
    • /
    • 제20권2호
    • /
    • pp.1-8
    • /
    • 2008
  • Regenerated composite fibers are prepared from solution(styela clava tunics /poly vinyl alchol) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt/wt) as a solvent by dry-wet spinning. The chemical cellulose (94%, ${\alpha}$-cellulose content) used for this study is extracted from styela clava tunics (SCT, Midduck), which are treated in chemical process and mechanical grinding. The structure and physical properties of regenerated composite fibers were investigated through IR-spetra, DSC, TGA and SEM. The optimal blend ratio of SCT/PVA for spinning solution was 70/30 and the total weight was 4% concentrations in NMMO/water solvent system. The fiber density, moisture contents and the degree of swelling were $1.5(g/cm^3)$ 10.2(%) and 365(%), respectively. The crystallinity index of composite fibers are decreased as the PVA contents increased. Thermal decomposition of composite fibers took place in two stages at around $250^{\circ}C$ and $550^{\circ}C$. The best thermal stability was obtained with 30% PVA contents.

정제 과정에 의한 탄화 셀룰로오스 섬유 구조의 증가 (Enhanced Fiber Structure of Carbonized Cellulose by Purification)

  • 김봉균;송재경;류광경;이희찬
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.257-261
    • /
    • 2005
  • 미생물에 의해 생산된 셀룰로오스는 고등식물을 이루고 있는 셀룰로오스보다 순수한 형태로 존재하고 굵기가 20~50 nm인 fibril이 높은 배향성과 결정성으로 3차원적 망상구조를 이루고 있다. 이러한 미생물 셀룰로오스를 이용한 탄화과정의 적용은 기존의 PAN, Pitch, 재생 셀룰로오스(Rayon)를 사용한 탄소 섬유의 제조에서 얻지 못하는 섬유 구조 탄소 물질의 대량 생산을 가능하게 하고 탄화과정에 의해 생산된 섬유 구조의 탄화 셀룰로오스는 높은 결정성과 배향성을 갖는 나노 영역의 흑연 결정상의 섬유 제조를 가능하게 할 것이다. 탄화에 사용되는 셀룰로오스의 생산성에 대하여 세 가지 균주들에서 생산된 셀룰로오스의 양을 비교하여 G. xylinus ATCC 11142가 15mL 배지당 건조 질량 0.066 g의 셀룰로오스를 생산하는 것을 확인하였고 셀룰로오스의 탄화과정에서 셀룰로오스의 열분해에 의해 생산된 타르(tar)에 의해 탄화 후, 셀룰로오스 탄화물의 섬유 구조를 저해시키는 문제점이 존재한다. 이러한 문제를 해결하기 위하여 탄소 나노튜브의 정제과정에서 연구된 액상, 기상 그리고 초음파 처리를 통한 정제방법들을 적용하여, 탄화 셀룰로오스에서는 초음파 처리를 통한 정제과정의 적용이 셀룰로오스 탄화물에서 섬유 구조가 증가하는 결과를 나타냈다.