Browse > Article

Enhanced Fiber Structure of Carbonized Cellulose by Purification  

Kim, Bong Gyun (Institute of Biomolecule Reconstruction, Sun Moon University)
Sohng, Jae Kyung (Institute of Biomolecule Reconstruction, Sun Moon University)
Liou, KwnagKyoung (Institute of Biomolecule Reconstruction, Sun Moon University)
Lee, Hei Chan (Institute of Biomolecule Reconstruction, Sun Moon University)
Publication Information
Applied Chemistry for Engineering / v.16, no.2, 2005 , pp. 257-261 More about this Journal
Abstract
The microbial cellulose is in a form of three dimensional net structures that consists of 20~50 nm fibrils. It possesses high crystallinity and orientation. It is difficult to synthesize large amount of fibrous carbon nanomaterials by the carbonization process using raw materials such as polyacrylonitrile (PAN), regenerated cellulose (Rayon) and pitch. However, it seems possible thru the application of microbial cellulose as raw material. The application of such cellulose can be further extended to the synthesis of highly oriented graphite fiber. Out of three different cellulose-producing strains, G. xylinus ATCC11142 was chosen as it has the highest productivity (0.066 g dried cellulose/15 mL medium). Tar is often produced during the carbonization of cellulose that limits the formation fibrous structure of the carbonized sample. In order to solve such a problem, pre-studied purification methods of carbon nanotube such as liquid phase oxidation, gas phase oxidation and filtration associated with ultrasonication were applied at the carbonized cellulose. In that case. only by filtration associated with ultrasonication, improved the formation of fiber structure of the carbonized cellulose.
Keywords
microbial cellulose; carbon nanofiber; carbonization; purification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. W. Kroto, J. R. Heath, S. C. O' Brien, R. F. Curl, and R. E. Smalley, Nature, 318, 162 (1985)   DOI
2 A. Yasuda and W. Mizutani, Thin Solid Films, 438, 313 (2003)   DOI
3 D. Hulicova, F. Sato, K. Okabe, M. Koishi, and A. Oya, Carbon, 39, 1438 (2001)   DOI   ScienceOn
4 H. C. Lee and H. Zhao, Korean J. Biotechol. Bioeng., 11, 550 (1996)
5 H. Hiura, T. W. Ebbensen, and K. Tanigaki, Adv. Mater., 7, 275 (1995)   DOI   ScienceOn
6 K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, and R. E. Smalley, Chem. Phys. Lett., 282, 429 (1998)   DOI
7 A. A. Berlin, A. M. Dubinskaya, and Y. S. Moshkovskii, Vysokomol Soedin, 1938 (1964)
8 H. Shioyama and T. Akita, Carbon, 41, 179 (2003)   DOI   ScienceOn
9 A. T. Matveev, D. Golberg, V. P. Novikov, L. L. Klimkovich, and Y. Bando, Carbon, 39, 155 (2001)   DOI   ScienceOn
10 I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, and R. H. Hauge, J. Phys. Chem. B, 105, 1157 (2001)   DOI   ScienceOn
11 A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature, 386, 377 (1997)   DOI   ScienceOn
12 H. W. Zhu, L. J. Ci, J. Liang, B. Q. Wei, C. L. Xu, and D. H. Wu, Carbon Mater. (Chinese), 15, 48 (2000)
13 S. Iijima, Nature, 354, 56 (1991)   DOI
14 R. Bacon and M. M. Tang, Carbon, 2, 211 (1964)   DOI   ScienceOn
15 H. W. Zhu, X. S. Li, L. J. Ci, C. L. Xu, J. Liang, and D. H. Wu, Chin Sci Bull, 47, 158 (2002)
16 F. Shafizadeh and Y. Sekiguchi, Carbon, 21, 511 (1983)   DOI   ScienceOn
17 H. Hajaligol, B. Waymack, and D. Kellogg, Fuel, 80, 1799 (2001)   DOI   ScienceOn