• Title/Summary/Keyword: Refrigeration Air-Conditioning Control System

Search Result 328, Processing Time 0.024 seconds

A Numerical Study on the Smoke Control in Side-Platform Type Subway Station Fires (상대식 지하철 역사내 화재시 연기제어에 관한 수치해석적 연구)

  • Lee, Sung-Ryong;Ryou, Hong-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • In this study, numerical simulations were carried out to analyze the effect of the smoke extraction system and fire shutters in subway station fires using FDS 4.0. Subway station used in the experiment was 205 m long. Simulation results are validated by comparing with experimental results. Simulation results showed good agreement with experimental results within $20\;^{\circ}C$. 20 MW polystyrene was used as a fuel in the numerical prediction. Numerical predictions were performed in the side-platform type subway station in case of a train fire. Temperature and CO concentration were lowered by the operation of smoke extraction system.

A Study on the Microbial Contaminant Transport and Control Method According to Government Building Bio- Attack (청사 건물의 Bio-Attack에 따른 미생물 오염원 확산 및 제어방안에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.252-259
    • /
    • 2008
  • The purpose of this study is to estimate the movement of microbial contaminant caused by bio-attack using bio-agent such as bacillus anthracis for preventing contaminant diffusion. multizone simulation was carried out in the case of three types of bio-attack scenario in the government building. Simulation results show that severe contaminant diffusion is brought about in all cases of bio-attack scenario in one hour, though pollution boundaries have different mode according to bio-attack scenarios. Simulation results also show that immune building technology such as filter and UVGI technology gives us powerful alternatives to meet the emergent situation caused by unexpected bio-attack.

An Analysis of the Control and Defrost Patents for Heat Pump (압축식 열펌프의 제상${\cdot}$제어 특허기술 분석)

  • Choi Jong Min;Sim Yun-Hee;Lee Sang Hyuk;Lee Jaehoon;Lee Jinwook;Park Seong-ryong;Kim Yongchan;Yoon Joonsang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1192-1203
    • /
    • 2005
  • A technical analysis was conducted to predict the development trend for heat pump system. The study was based on a submitted patent from 1983 to 2002 in Korea, U.S.A. and Japan. The total number of raw data from the registered database was 19,261 and the obtained data to be analyzed through the filtering process was 5,143. Technical development of compression type heat pump was more dominant than the other types, absorption, adsorption, and chemical heat pump. The patents for compression type made up over $80\%$ in each country, Most of patents were developed for the defrosting and controlling technology of the compression type heat pump system. Approximately $24\%\;and\;62\%$ of the patents about compression type heat pump were for defrosting and control technologies, respectively.

An Experimental Study on Semiconductor Process Chiller for Dual Channel (듀얼채널을 적용한 반도체공정용 칠러의 실험적 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.760-766
    • /
    • 2010
  • Excessive heat occurs during semiconductor manufacturing process. Thus, precise control of temperature is required to maintain constant chamber-temperature and also wafer-temperature in the chamber. Compared to an industrial chiller, semiconductor chiller's power consumption is very high due to its continuous operation for a year. Considering the high power consumption, it is necessary to develop an energy efficient chiller by optimizing operation control. Therefore, in this study, a semiconductor chiller is experimentally investigated to suggest energy-saving direction by conducting load change, temperature rise and fall and control precision experiments. The experimental study shows the cooling capacity of dual-channel chiller rises over 30% comparing to the conventional chiller. The time and power consumption in the temperature rising experiment are 43 minutes and 8.4 kWh, respectively. The control precision is the same as ${\pm}1^{\circ}C$ at $0^{\circ}C$ in any cases. However, it appears that the dual channel's control precision improves to ${\pm}0.5^{\circ}C$ when the setting temperature is over $30^{\circ}C$.

Evaluation of the Thermal and Noise Environment in an Ancient Tomb installed a Duct-type HVAC System (공조기가 설치된 고분 내에서의 열 및 음 환경 평가)

  • Park, Jin-Yang;Jun, Hee-Ho;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.228-234
    • /
    • 2007
  • Opening an ancient tomb interior can deal fair damage for preservation in long period because of high moisture. In this study, a duct-type HVAC system was installed to preserve an ancient tomb and temperature and humidity was measured to analyze heat environment. Armhole was measured to search whether an ancient tomb receives effects of vibration caused by a duct-type HVAC system. According to the measured data, temperature in an ancient tomb is kept adaptively in conservation regardless of a duct-type HVAC system installation when it rains in summer. The other side, humidity is kept adaptively in conservation when installed duct-type HVAC system. But when it is in natural state, a lot of humidity by dew condensation phenomena. So it needs a duct-type system for an ancient tomb conservation. In the case of vibration, measurement value of 3 satisfy control but Germanic DIN 4150 does not satisfy. Therefore, equip must be such that it can prevent vibration for safety.

Energy Simulation for Conventional and Thermal-Load Controls in District Heating (지역난방의 일반제어 및 열량제어 에너지 시뮬레이션)

  • Lee, Sung-Wook;Hong, Hiki;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.50-56
    • /
    • 2015
  • Korea district heating systems have mainly used setting temperature control and outdoor reset control. Different from such conventional normal methods, a thermal-load control proposed in Sweden can decrease the return temperature and reduce pump power consumptions because the control is able to provide the appropriate amount of required heat. In this study, further improved predictive optimal control in addition to the conventional controls were simulated in order to verify its effect in district heating system using TRNSYS 17. $200m^2$ apartment housing which accounts for 25% in Korea and is used as a calculation model;. the number of households in the simulation was 9. As a result, a higher temperature difference and decreasing flow rate at primary loop were shown when using thermal-load control.

A Study on the Operation Strategy of Radiant Floor Cooling in Apartment Buildings (공동주택에서 바닥복사냉방의 적정 운영방안에 관한 연구)

  • 조영흠;석호태;여명석;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.574-583
    • /
    • 2004
  • In this study, the operation strategy of the radiant floor cooling is evaluated in terms of indoor environmental conditions and energy consumption through simulations using the TRNSYS comparing the existing cooling operation. The operation strategy during continuously operated for cooling is proposed that a representative room had additional equipments and other rooms were operated with only a radiant floor cooling system and that system and control method for cooling are varied with period while intermittently operated for cooling. Specifically, when there are no people in the room, rooms were operated by only radiant floor cooling system using cooling storage and when people are occupied, rooms were operated by dehumidification and supplementary cooling device with radiant floor cooling system. The results of this study show that proposed operation strategy can stably maintain the set room air temperature and can reduce the energy consumption compared to the existing cooling method during continuously operated for cooling. While intermittently operated for cooling, the difference of set room air temperature by proposed operation strategy does not happen, satisfying comfort standards and the radiant floor cooling can expect to supply stable electric power because of decreasing demand for peak electric power of energy consumption.

Study on the Development of Optimal Heat Supply Control Algorithm in Group Energy Apartment Building According to the Variation of Outdoor Air Temperature (외기온도 변화에 따른 집단에너지 공동주택의 최적 열공급제어 알고리즘 개발에 관한 연구)

  • Byun, Jae-Ki;Lee, Kyu-Ho;Cho, Young-Don;Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.334-341
    • /
    • 2011
  • In the present study, optimal heat supply algorithm which minimize the heat loss through the distribution pipe line in group energy apartment was developed. Variation of heating load of group energy apartment building in accord with the outdoor air temperature was predicted by the heating load-outdoor temperature correlation. Supply water temperature and mass flow rate were controlled to minimize the heat loss through distribution pipe line. District heating apartment building located in Hwaseong city, which has 1,473 households, was selected as the object building for testing the present heat supply a1gorithm. Compared to the previous heat supply system, 10.4% heat loss reduction can be accomplished by employing the present method.

A Study on the Smoke Control Performance Evaluation of High-rise Buildings under Smokeproof Enclosure Design Scenarios (초고층 건축물의 수직 구획화에 따른 급기가압제연시스템 성능평가에 관한 연구)

  • Bae, Sang-Hwan;Ryu, Hyung-Kyou;Lee, Byung-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.343-350
    • /
    • 2014
  • Regardless of the building design scenarios, evaluation of high-rise buildings required to have smoke-proof enclosures that are provided with a smoke management system. The goal of the smoke management system design is to make sure the pressure differentials at every story within the building fall within the allowable pressure range. If the minimum design pressure is not met, smoke may enter the stair. If the provided pressure is too great, it becomes difficult for occupants to open the doors, while attempting to egress. Ensuring that the pressure differential between the vestibule and the floor is within the prescribed range becomes challenging, due to natural effects on the building, such as the stack effect. In this research, smokeproof enclosure design scenarios were evaluated; and as a result, separation levels for compartmentation were deduced, in the balancing of pressurized-vestibule smoke control systems.

Measurement and Simulation of Heating Energy for Apartments with District Heating (지역난방 아파트에 대한 난방에너지 실측 및 시뮬레이션)

  • Lee, Eun Ju;Lee, Doo Young;Hong, Hiki;Kim, Young Kyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.572-578
    • /
    • 2014
  • Heating energy was measured in an apartment housing unit with a district heating system, varying the kind of hot water distributors. Ondol coils passing through a living room raised the temperature of the room where the heating was turned off. Including this characteristic of Ondol heating into the modeling, we performed simulations and showed a verification by comparison with the results of measurements. As a result, a main flow control method, which changes hot water flow rate supplied to a housing unit according to the thermal load, can reduce the supplied flow rate and lower the return temperature, compared with a constant flow method. That can result in decreased heat loss in utility-pipe conduits even though the heating energy supplied is almost the same. An outdoor reset control that raises the temperature of the supplied hot water if the outdoor temperature falls has the effect of a quicker response in heating than the reduced flow rate and return temperature.