• 제목/요약/키워드: Refrigerant flow rate

검색결과 227건 처리시간 0.027초

다분지 응축기의 냉매유량 분배에 미치는 중력의 영향을 고려한 해석방법 (Analysis of the Gravity Effect on the Distribution of Refrigerant Flow in a Multi-circuit Condenser)

  • 이장호;김무환
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1167-1174
    • /
    • 2004
  • The method to consider gravity effect on the performance of a condenser is developed, and a simple condenser having 'nU' type two circuits is analyzed. Each circuit has the same length and inlet air-side operational conditions. The only difference between two circuits is the direction of refrigerant flow, which is exactly opposite each other between the upper 'n' type circuit and the lower 'U' type circuit. It is shown that the gravity makes the distribution of refrigerant flow uneven in the two circuits at lower refrigerant flow rates; heat transfer rate also becomes uneven. Moreover, much of the refrigerant exists as liquid state in the circuit having low refrigerant flow rate, which will make the cycle balance unstable in the refrigeration cycle system like a heat pump.

멀티형 공조시스템의 증발기 과열도에 관한 실험적 연구 및 냉매유량 제어 (Experimental Study of the Superheat and Control of the Refrigerant Flow-Rate in the Evaporator of a Multi-type Air-Conditioning System)

  • 김태섭;홍금식;손현철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.221-221
    • /
    • 2000
  • The heat exchange part in a modern multi-type air-conditioning system employs multiple-pass heat exchangers. The heat-transfer performance of an each pass in such an exchanger depends strongly on the length of the two-phase region and the mass flow of the refrigerant. The total length and diameters of the pipes, the exit conditions, and the arrangement of each pass as well as the geometrical shape of the distributor at the branching sections are considered to be major factors affecting the heat-transfer performance. The refrigerant commonly used in these systems is HCFC-22. The two objectives of this paper are to investigate the characteristics of the refrigerant flow rate and the superheat in the evaporator of a multi-type air-conditioning system for a single or simultaneous operating conditions and to control the superheat and the refrigerant flow rate of the evaporator.

  • PDF

냉동기유가 모세관내의 냉매유량에 미치는 영향 (The Effects of Oil on Refrigerant Flow through Capillary Tubes)

  • 홍기수;황일남;민만기
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.791-801
    • /
    • 2000
  • An experimental study was conducted to analyze the effects of oil on refrigerant flow through adiabatic capillary tubes, and to develop a model for mass flow rates of refrigerant/oil mixture at various capillary tubes and flow conditions. Mass flow rates and the profiles of the pressures and temperatures along the capillary tubes was obtained with the oil concentration of R-22/SUNISO 4GS oil mixture at various test conditions. The flow trends as a function of geometry and flow conditions for pure refrigerant and refrigerant/oil mixture were similar in adiabatic capillary tubes. Mass flow rate of the refrigerant/oil mixture was less than that of pure refrigerant at the same test conditions.

  • PDF

R12 냉매를 이용한 냉동압축기 임펠러 유동해석 (Numerical analysis on the impeller of chiller compressor using refrigerant R12)

  • 음학진;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.696-701
    • /
    • 2001
  • The performance and the internal flow of the impeller of the centrifugal chiller compressor with refrigerant R12 as working fluid were studied numerically, using CFD code, CFX-Tascflow, which is commercially available. In this numerical study, the thermodynamic and transport properties of the refrigerant gas were generated by the property program of NIST and linked with main program to extend the capability of the code to refrigerant gases. Numerical study was applied to several mass flow rates near the design mass flow rate at constant rotating speed. Overall performance and flow characteristics of the impeller at impeller exit were investigated. The results were physically reasonable and showed good agreement with experimental measurement at the design flow rate.

  • PDF

R410A를 이용한 브레이징 타입 판형열교환기에서 물 측 유동방향에 따른 응축/증발 성능 평가 (An Experimental Study on Evaporation/Condensation Heat Transfer with Flow Direction in Brazed Plate Heat Exchanger using Refrigerant 410A)

  • 이성우;정영만;이재근;이동혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1096-1101
    • /
    • 2009
  • The plate heat exchanger(PHE) in heat pump has two flow streams of the refrigerant and water. The flow direction of the refrigerant, unlike that of water, can be changed by a 4-way valve depending on operating condition. Therefore the flow arrangement is a parallel flow for heating and a counter flow for cooling, respectively. In this study, the effects of the flow direction of the water on the heat transfer rate are investigated experimentally. The experiments are carried out for brazed plate heat exchangers under a parallel and counter flow conditions in evaporation and condensation. The experimental parameters in this study include the mass flux of the refrigerant 410A from 3 to $14\;kg/m^2s$ and the flow patterns for the pressure of PHE fixed at 0.97 and 2.46 MPa. The results show that both the heat transfer rate and frictional pressure drop across the PHE increase with the mass flux. The heat transfer rate of the refrigerant 410A for evaporation show great sensitivity to flow direction of the water. The heat transfer rate for evaporation with a counter flow are 5-30% higher than that with a parallel flow.

  • PDF

용량 가변 및 유량변화에 따른 지열원 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성 (Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Type Ground Source Heat Pump with a Variation of Compressor Speed and Water Flow Rate)

  • 조찬용;최종민
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.30-36
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWTs of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system was optimized at higher refrigerant charge amount conditions.

압축기 용량 및 유량변화에 따른 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성 (Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Heat Pump with a Variation of Compressor Speed and Water Flow Rate)

  • 조찬용;최종민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.143.1-143.1
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz, and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWT of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system optimized at higher refrigerant charge amount conditions.

  • PDF

R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구 (A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant)

  • 정규하;박윤철;오상경
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

열펌프의 성능 최적화에 관한 연구 (Optimization of Heat Pump Systems)

  • 최종민;윤린;김용찬
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

다중 유로에서 과열도의 불균형에 따른 증발기의 성능 특성에 관한 연구 (The Effect of Non-uniform Superheat on the Performance of a Multi-path Evaporator)

  • 최종민;김용찬
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1043-1048
    • /
    • 2003
  • An experimental investigation was executed to determine the capacity degradation due to non-uniform refrigerant distribution in a multi-path evaporator. In addition, the possibility of recovering the capacity reduction by controlling the refrigerant distribution among refrigerant paths was assessed. The finned-tube evaporator, which had a three-path and three-depth-row, was tested by controlling inlet quality, exit pressure, and exit superheat for each refrigerant path. The capacity reduction due to superheat unbalance between each path was as much as 30%, even when the overall evaporator superheat was kept at a target value of 5.6$^{\circ}C$. It may indicate that the internal heat transfer within the evaporator assembly caused the partial capacity drop. For the evaporator having air mal-distributions, the maximum capacity reduction was found to be 8.7%. A 4.5% capacity recovery was obtained by controlling refrigerant distribution to obtain the target superheat at the outlet of each path.