• 제목/요약/키워드: Refrigerant Oil

검색결과 115건 처리시간 0.019초

판형열교환기에서 POE오일이 R134a 증발 열전달에 미치는 영향에 대한 실험적 연구 (Experimental study on Effects of POE oil on R134a Evaporation Heat Transfer in Plate Heat Exchanger)

  • 장영수;장재규;강병하;김석현
    • 대한기계학회논문집B
    • /
    • 제38권3호
    • /
    • pp.255-262
    • /
    • 2014
  • 판형열교환기의 증발과정에서 오일에 위한 영향을 알아보기 위해 마이크로 기어 펌프를 이용한 냉매-R134a 순환 성능실험 장치를 구성하여, 증발열전달 실험을 수행하였다. POE 오일을 펌프를 이용하여 냉매 질량 유량에 비례하도록 0~5%를 첨가하여, 오일순환량에 따른 열전달계수 변화를 측정하였다. 오일순환율이 증가할수록 R134a 증발 열전달계수는 감소하며, 압력손실은 증가한다. 질량유량 80 g/s, 증발 온도 $30^{\circ}C$ 일 때, 오일 순환율 2%조건에서 무오일 대비 약 10%의 열전달계수가 감소하였고, 압력손실은 약 10% 증가하였다.

화재 실험을 통한 에어컨 실내기의 화염확산에 관한 현상학적 연구 (A Phenomenological Study on the Flame Spread of Air Conditioner Indoor unit by Fire Tests)

  • 최승복;이승훈;최민기;최돈묵
    • 한국화재소방학회논문지
    • /
    • 제27권6호
    • /
    • pp.89-96
    • /
    • 2013
  • 본 연구의 목적은 연소 실험을 통하여 에어컨 실내기의 화염확산에 관한 형상을 관찰하여 화재원인 및 발화지점을 확인하기 위함이다. 본 실험은 화염이 주변으로부터 에어컨 상단에 옮겨 붙는다는 것을 가정하여 실내기 상단을 n-햅탄을 적신 천으로 착화시켰으며, 동일한 조건으로 2회의 반복실험을 하였다. 착화 후 559 s와 734 s 사이에 실내기와 연결된 냉매관이 파열되면서 내부에 충입되어 있던 냉매와 함께 윤활유가 커다란 폭음을 내며 고온 고압의 화염이 급격히 분출되었으며 연소 잔류물을 확인한 결과, 증발기 일부와 모터, 금속함 등을 제외한 대부분은 소실되었다. 에어컨 자체에서 발화되었을 경우와 외부 화염에 의해 소훼되었을 경우 배선의 합선흔적 위치는 유사하였다. 따라서 연소 잔류물의 형상만으로 발화원인과 지점을 특정 짖는 것은 불확실하다는 것을 확인하였다.

수평관내 $CO_2$의 초임계 영역내 열전달에 관한 연구 (The heat transfer characteristics of supercritical $CO_2$ in a horizontal tube)

  • 오후규;이동건;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.526-532
    • /
    • 2005
  • The cooling heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter. a pre-heater and gas cooler(test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $400\;kg/m^{2}s$ and the inlet cooling pressure of 7.5 MPa to 10.0 MPa. The variation of heat transfer coefficient tends to decrease as cooling pressure of $CO_2$ increases. The heat transfer coefficient with respect to mass flux increases as mass flux increases. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with that predicted by Blasius's correlation. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Bringer-Smith.

수평관내 이산화탄소의 증발 압력강하 (Evaporation pressure drop of $CO_2$ in a horizontal tube)

  • 이동건;손창효;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

Practical Control Scheme of the Variable Speed Refrigeration System

  • Agung, Bakhtiar;Fatkhur, Rokhman;Kim, Hong-Sik;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.199-203
    • /
    • 2011
  • With the improvement of standard of manufacturing process, oil cooling unit for manufacturing machine has been developed. A control system must be designed in order to keep oil temperature of the machine within a very restricted range and also to reduce energy consumption. In order to get the low deviation of the controlled temperature and the low efficiency, the on/off control scheme is gradually being replaced by a variable speed refrigeration system (VSRS) with an inverter driven compressor over recent decades. This paper gives the flowchart to control the compressor speed and also the electronic expansion valve (EEV) aperture in oil cooling unit refrigeration system using R22 as the refrigerant. This control scheme has already tested in experiment apparatus with room temperature condition constant at $25^{\circ}C$ and variable load condition at 4kW, 6kW, 7kW, 8kW and 10kW.

  • PDF

초임계 영역에서 수평관내 $CO_2$ 열전달과 압력강하 (The heat transfer and pressure drop characteristics of $CO_2$ during supercritical region in a horizontal tube)

  • 이동건;오후규;김영률;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.500-508
    • /
    • 2004
  • The heat transfer coefficients during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, and a gas cooler(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flow meter. The gas cooler is a counterflow heat exchanger by cooled water flowing in the annulus. The $CO_2$ flows in the horizontal stainless steel tube. which is 9.53mm in O.D. and 7.75mm in I.D. The gas cooler is 6 [m] in length. which is divided into 12 subsections, respectively. The experimental conditions considered in the study are following range of variables : refrigerant temperature is between 20 and $100^{\circ}C$. mass fluxes ranged from 200 to 400kg/($m^2$.s), average pressure varied from 7.5 to 10.0MPa. The main results were summarized as follows : The friction factors of $CO_2$ in the gas cooler show a relatively good agreement with those predicted by Blasius' correlation. The local heat transfer coefficient in the gas cooler has compared with most of correlations, which are the famous ones for forced convection heat transfer of turbulent flow. The results show that the local heat transfer coefficient of gas cooler agrees well with the correlation by Bringer-Smith except that at the region near pseudo critical temperature. while that at the near pseudo critical temperature is higher than the correlation.

수평원관내 $CO_2$의 증발열전달 (Evaporation Heat Transfer of Carbon Dioxide in a horizontal Round Tube)

  • 경남수;장승일;최선묵;손창효;오후규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.262-267
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ in a horizontal round tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 7.75 mm, and length of 5 m. The experiments were conducted at mass flux of 200 to 500 $kg/m^2s$, saturation temperature of $-5^{\circ}C$ to $5^{\circ}C$, and heat flux of 10 to 40 $kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with teat results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

공조용 압축기 축 거동 측정용 베어링 내장형 센서 (The built-in sensor bearing to measure shaft behavior of compressor for air-conditioning)

  • 김지운;안형준;김지영;한동철;윤정호;황인수
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.230-236
    • /
    • 2001
  • We developed a built-in sensor bearing to measure the rotor motion of a rolling piston type compressor for the air conditioner. Because of needs for the high efficiency and long life span of compressor, and the usage of alternative refrigerants, the operating condition of the compressor becomes more severe. The accurate measurement of the rotor motion of the compressor can contribute greatly to the design and analysis of the hydrodynamic bearing. However, it is difficult to measure accurately the shaft behavior of small compressor because of the small space for the sensor mount, high temperature and pressure of compressor, oil mixed with refrigerant, and electromagnetic noise of the motor. To overcome these difficulties, we develop the cylindrical capacitive sensor that is built in the hydrodynamic bearing and calibrate the built-in sensor bearing indirectly through measuring the oil relative permittivity. We measured the rotor motion as well as suction and discharge pressures in various conditions. The several experimental results show that the developed built-in sensor bearing can measure the rotor motion not only in steady state but also in transient state.

  • PDF

자동차 공조장치용 증발기의 전열 성능 예측 (Evaporator Thermal Performance Prediction on Automotive Air Conditioning System)

  • 김종수;강정길
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.297-305
    • /
    • 1991
  • Recently, automotive air conditioning system manufacturers have been made a great efforts on the system compactness and high efficiency. This growing interest comes improvements in evaporator thermal performance, one of the most important factors affecting the performance of air conditioning system. In order to improve design of compact type evaporator, this study executes performs to develop a computer program for evaporator thermal performance prediction of automotive air conditioning system. The brief summaries of this study are as follows: 1) To predict the overall thermal performance of serpentine type evaporator, the new simulating method is developed. 2) The calculations are performed as functions of oil mass concentration and refrigerant two-phase distribution at inlet manifold of evaporator. 3) The validity of this simulating program is confirmed by comparing the predicted thermal performance results to experimental results of practical available evaporator. 4) Based on these results, suggestions are made to improve the thermal performance of evaporator.

  • PDF

스크롤 컴프레서 팁실의 마찰특성 (Friction Characteristics of the Tip Seal in a Scroll Compressor)

  • 정봉수
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.370-377
    • /
    • 2014
  • The basic elements in a rotary-type scroll compressor are two identical spiral scrolls containing refrigerant gas. The pressure variations in the compression pockets of a scroll compressor change the forces acting on the orbiting scroll, and these forces affect the dynamic behavior of the compression mechanism parts. To achieve high efficiency, using a self-sealing mechanism as a tip seal mechanism is very effective. Tip seals, which are placed on top of the scroll wraps, accomplish thrust sealing. This study calculates the friction force between the tip seal and the side plate of a scroll compressor using the numerical model considered in the Reynolds equation. The calculated friction force is verified by an experiment using a pin-on-disk apparatus. A hydraulic servo valve that controls the pressure of the oil hydraulic cylinder applies the normal load for the test, and a DC servo motor controls the sliding velocity of the disk. The friction force and normal load are measured by the force sensors attached to the supporting parts. The results show that the theoretical and experimental results are similar and that the friction is influenced by the viscosity of the oil and the sliding velocity of the scroll.