• Title/Summary/Keyword: Refractory organic

Search Result 94, Processing Time 0.029 seconds

The Fractionation Characteristics of Organic Matter in Pollution Sources and River (오염물질 배출원과 하천에서의 유기탄소 분포 특성)

  • Kim, Ho-Sub;Kim, Sang-Yong;Park, Jihyung;Han, Mideok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.580-586
    • /
    • 2017
  • The fractionation characteristics of organic matter were investigated in inflow and effluent of each other pollution sources and river. While the DOC/TOC ratio in the influent of public sewage treatment plant and livestock disposal facilities was above 0.58, the POC/TOC ratio of human livestock Night soil treatment plant and stormwater runoff was more than 0.7. The TOC removal efficiency of public sewage treatment plant and human livestock Night soil treatment plant were 88.5 % and 99.6 %, respectively. Although the concentration distribution of organic matter pollution most of total organic carbon (TOC) in effluent of pollution sources accounted for dissolved organic carbon (DOC) type (DOC/TOC ratio >0.89) and Refractory-DOC (RDOC)/TOC ratio was higher (>0.65). The fractionation characteristics of organic matter in river were similar with that of sewage treatment plant and TOC concentration showed the positive correlation with DOC ($r^2=0.93$) and RDOC ($r^2=0.89$) concentration. The decay rate of Labile DOC (LDOC) (avg. $0.128day^{-1}$) was higher than labile particulate organic carbon (LPOC) ($0.082day^{-1}$), while that of DOC ($0.008day^{-1}$) was lower than POC ($0.039day^{-1}$) (paired t-test, p < 0.001, n = 5). These study results suggested that it should consider important both TOC and DOC as the target indicator to control refractory organic matter in pollution sources.

Characteristics of TCE, Benzene & 2,4 Dichlorophenol Degradation in Aqueous solution by Ulrasonic Irraditation (초음파 조사에 의한 수중의 TCE, Benzene & 2,4 Dichlorophenol의 분해 특성)

  • 손종렬;모세영
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.33-41
    • /
    • 1996
  • This study was performed to examine the factors influencing on the degradation of TCE, Benzene and 2,4 DCP in aqueous solution using ultrasonic irradiation. The TCE,Benzene and 2,4 DCP, which are hazard compounds causing environmental pollution, were not decomposable pollutants by convientional treatment. The results shows that the generation of H$_{2}$O$_{2}$, H$^{+}$ and OH$^{-}$ radical was formed by the oxidation and reduction reaction of ultrasound, and then theses decomposed the refractory pollutants of TCE, Benzene & 2,4 DCP in aqueous solution. we conformed that the ultrasonic irradiation was excellent in removal efficiency of the refractory pollutants any other than Advanced Oxidation Processes(AOP), utilized the treatment of organic compounds in the industrial wastewater. Consequently, these results suggest that ultrasonic irradiation may be extremely useful for the treatment of wastewaters contaminated organic pollutants, which is difficult to treat economically by conventional process.

  • PDF

Development of Estimation Indices for Refractory Organic Matter in the Han-River Basin using Organic Matter Parameters and Spectroscopic Characteristics (일반 유기물 항목과 분광특성을 이용한 한강수계 내 난분해성 물질 지표 제시)

  • Lee, Bomi;Lee, Tae-Hwan;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.625-633
    • /
    • 2011
  • A long-term water quality monitoring in the Han River Basin reveals a consistent increasing trend for the concentration of refractory organic matter (R-OM) in major monitoring sites of the watershed. Because the determination of R-OM concentrations typically requires a long time of microbial incubation, it is essential to present the estimation indices for R-OM for an efficient watershed management. In this study, a number of surface water samples were classified into three groups, each of which were collected from Lake Paldang, rivers at rain and non-rain events, respectively. The corresponding R-OM concentrations were correlated with biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) concentrations as well as ultraviolet and fluorescence intensities of the filtered samples. Among the traditional organic matter parameters, TOC exhibited the highest correlation coefficient with the R-OM concentrations regardless of the types of the sample groups. The equations for conversing TOC into R-OM concentrations were finally suggested as $0.43{\times}TOC+1.12$, $0.44{\times}TOC+0.61$, $0.24{\times}TOC+1.28$ for river samples at rain and non-rain events, and lake samples, respectively. TOC-BOD(C), the values of the TOC concentrations subtracted by carbon-converted BOD concentrations, was a good index for estimating the absolute concentrations of R-OM. UV absorbance at 254 nm was well correlated with R-OM concentrations of river samples while fluorescence intensities at 350 nm showed an excellent relationship with R-OM concentration of the lake samples. Our results suggests that simple spectroscopic parameters could be applied for in-situ monitoring tool techniques in watersheds.

Dissolved Organic Matters Characteristics in Freshwater

  • Park, Je-Chul;Oh, Young-Taek;Bae, Sang-Deuk;Ryu, Dong-Kyeong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.26-26
    • /
    • 2004
  • This study was conducted to evaluate the characteristics of dissolved orgamc matters based on their origins. The dissolved organic carbon(DOC) represents an index for dissolved organic matter and basically regarded as a source of organic pollution. The monthly variations and vertical profiles of dissolved organic carbon(DOC) in Kumoh reservoir were surveyed from May 2001 to April 2002. In addition, other areas such as river, reservoir, sewage and industrial wastewater were also surveyed in summer 2001. Kumoh reservoir was divided with depth into three layers .: epilimnion, metalimnion and hypolimnion. The proportion of total DOC(T-DOC) was classified by labile DOC(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation. DOC of freshwater and Kumoh reservoir was ranged to be 1.6~4.1 mgC/L and 2.1~4.0 mgC/L, respectively. L-DOC accounted for 3~30% of DOC from watershed. Therefore, refractory dissolved organic carbon(R-DOC) was major component of DOC in the watershed. The decomposition rate(k) ranged from 0.008 $d^{-1}$ to 0.083 $d^{-1}$ in Kumoh reservoir. The highest decomposition rate(k) was observed at River Hoein III freshwater. Therefore, modified total organic carbon analyzer is needed to be applied for effective management of dissolved organic matter.

  • PDF

Enhancement of biodegradability of the Refractory Organic Substances in Aqueous Solution with Discharged Water Generating (DWG) System (방전시스템(Discharged Water Generator)을 이용한 난분해성 물질의 생분해능 향상에 관한 연구)

  • Yeo, Inho;Ryu, Seung Min;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.79-85
    • /
    • 2006
  • Innovated technique to oxidize pollutants has been developed. The technique for this study uses plasma discharge in 2-phase (Air-Water) and is called Discharged Water Generating (DWG) system. It produces electric arc which generates not only the physical decomposing power against the pollutants but also oxidants to sterilize pollutants depending on the inlet gas species. These physical and chemical products play an important role in COD decrease and biodegradability enhancement. The enhancement of biodegradability for the refractory organic substances in aqueous solution was estimated in this study. Argon discharge reduced NBDCOD of EDTA from 58.7mg/L to 38.8mg/L, but oxygen discharge and ozonation reduced it to 37.74mg/L and 38.73mg/L respectively. Furthermore, Argon discharge changed 1181mg/L of NBDCOD of dye effluent into 606mg/L but oxygen discharge and ozonation changed it into 888mg/L and 790mg/L respectively.

Analysis of Future Trends for Refractory Dissolved Organic Carbon in the Nakdong River Basin using Elasticity Theory (탄성도 이론을 이용한 낙동강유역 난분해성 용존 유기탄소 미래 추세 분석)

  • Park, Yoonkyung;Choi, Daegyu;Lee, Jae Woon;Kang, Limseok;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.476-488
    • /
    • 2013
  • Refractory Dissolved Organic Carbon (RDOC) is becoming more important index on management of water quality, water regulation as well as ecosystem management. We analyzed trends of RDOC using elasticity in the Nakdong river basin. If climate elasticity of streamflow is positive, change of streamflow can be defined by the proportional change in a climatic variable such as precipitation and temperature. Elasticity of streamflow to precipitation and elasticity of RDOC to precipitation were estimated in the present, and we also analyzed the variation of elasticity in the future using climate change scenarios, RCP 8.5/ 4.5. Mean streamflow elasticity is 1.655, and mean RDOC elasticity is 1.983. RDOC is more sensitive to precipitation change than streamflow. The variation of RDOC is directly proportion to precipitation in all scenarios, but the Load of RDOC is dependent on precipitation as well as others. There is a need for additional correlation analysis between RDOC and other factors for accurate prediction.

Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment (팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여)

  • Lee, Yeonjung;Ha, Sun-Yong;Hur, Jin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.192-201
    • /
    • 2019
  • While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory pool, biodegradation experiment and $KMnO_4$ oxidation experiment were conducted for 60 days using $^{13}C$ and $^{15}N$ labeled natural phytoplankton assemblage. The assemblage was collected from Lake Paldang on May 20, 2010. The photosynthetically produced total organic carbon ($TO^{13}C$), particulate organic carbon ($PO^{13}C$), and particulate nitrogen ($P^{15}N$) remained at 26%, 20%, and 17% of the initial concentrations, respectively, in the form of non-biodegradable organic matter. In addition, 12% and 38% of $PO^{13}C$ remained after $KMnO_4$ treatment on Day 0 and 60, respectively. These results indicate that photosynthetic products could be an important source of refractory organic matter after microbial degradation. Moreover, the microbially transformed algal-derived OM could contribute to the oxidation rate of the chemical oxygen demand.

Changes in Dissolved Organic Matter Composition in the Namhan River during a Heavy Rain Event (집중 강우시 남한강 내 용존 유기물의 성상 변화)

  • Oh, Seijin;Woo, Sungho;Hur, Jin;Jung, Myung-Sook;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.697-703
    • /
    • 2009
  • In this study, changes in the composition of dissolved organic carbon (DOC) were investigated using water samples collected at a downstream site of the Namhan River near the Lake Paldang ($N37^{\circ}24^{\prime}05.33^{{\prime}{\prime}}E127^{\circ}32^{\prime}25.01^{{\prime}{\prime}}$) during a heavy rain event from July 23 to July 28, 2008. The DOC concentrations varied from 1.68 to 3.18 mg/L with the maxium value at a peak of the river water level. Each DOC sample was fractionated into three compositions including hydrophilic (Hi), hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The results showed that HoA was most abundant fractions, constituting 47.2~56.5% of DOC. Refractory dissolved organic carbon (R-DOC) contents were also determined by measuring the DOC concentration after 28-day dark incubation of the samples. R-DOC content was in the range from 83 to 99% of DOC and it was significantly correlated with HoA contents (r = 0.91, p<0.005), while it did not exhibit such a good correlation with the fractions of Hi and HoN (p>0.02). Our results suggest that the HoA, which is associated with humic substances, may be a major composition of refractory organic matters in rivers during storm events.

Changes in the Concentrations and the Characteristics of Organic Carbon After Entrance into Dam Reservoirs (댐저수지 유입 후 유기탄소 농도 및 성상 변화)

  • Shin, Jae-Won;Lee, Bo-Mi;Hur, Jin;Park, Ji-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 2013
  • Changes of organic carbon after the entrance into dam reservoirs were investigated using water samples collected in May, September, and October in 2010 from the inflow sites and the outlets of four selected dam reservoirs-Soyang, Chungju, Chungju regulation, and Uiam. Increase of refractory dissolved organic carbon (R-DOC) was observed only for large dam reservoirs with long residence times whereas the trend was not found for relatively small reservoirs. The effects of residence times on organic carbon changes were further confirmed by significant positive correlations between monthly residence times and the relative increase of either dissolved organic carbon (DOC) or R-DOC concentrations. Comparison of spectroscopic characteristics of DOC revealed that the changes in the large reservoirs in May might result from in-lake processes. The inflow of terrestrial sources of DOM during storms appears to largely affect the DOC quality of the large reservoirs for the rest of the sampling periods. The mechanism, however, did not fully explain the behaviors of DOC for the small sized reservoirs. Our combined results suggested that both residence time and the input of allochthonous carbon sources might substantially influence the quantity of DOC as well as its quality in dam reservoirs.

Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment - (전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 -)

  • Yang, Hae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.