• Title/Summary/Keyword: Reformed fuel

Search Result 67, Processing Time 0.026 seconds

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production (수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

Productivity Changes by Public Transport Reforms in the Seoul's Urban Bus Industry (서울의 대중교통체계 개편에 따른 시내버스업체의 생산성 변화)

  • Oh, Mi-Young;Kim, Sung-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.53-61
    • /
    • 2005
  • The Seoul City Government recently reformed the entire public transport system in an effort to prevent further deterioration in urban bus system's performance and service level. To analyze into impact on the productivity of Seoul's urban bus firms, this paper measures firm-level technical efficiency and productivity change with data envelopment analysis and Malmquist index approach. The paper then conceptualizes that these forms produce three kinds of output (bus-kilometers, passengers, or bus-kilometers and passengers) using five inputs (driver, maintenance, management, vehicle and fuel). The findings show that most (over one half) firms experienced a decline (an improvement) in productivity in the case of specifying only bus-kilometers (passengers) as output. As a result, it is discovered that an average firm had no change in productivity in the case of combining bus-kilometers and passengers as output. This is because the efficiency of an average firm declined due to increase in employees per bus and to an decrease in kilometers per bus. while its effectiveness improved due to an increase in passengers per bus which was caused by an increase in routes and a change in fare structure.

An Experimental Study on Flammability Limits and Combustion Characteristics of Synthetic Gas in a Constant Combustion Chamber (정적연소기를 이용한 합성가스의 가연한계 및 연소특성에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Synthetic gas is defined as reformed gas from hydrocarbon-based fuel and the major chemical species of the synthetic gas are $H_2$, CO and $N_2$. Among them, hydrogen from synthetic gas is very useful species in chemical process such as combustion. It is a main reason that many studies have been performed to develop an effective reforming device. Furthermore, other technologies have been studied for synthetic gas application, such as the ESGI(Exhaust Synthetic Gas Injection) technology. ESGI injects and burns synthetic gas in the exhaust pipe so that heat from hydrogen combustion helps fast warmup of the close-coupled catalyst and reduction of harmful emissions. However, it is very hard to understand combustion characteristic of hydrogen under low oxygen environment and complicated variation in chemical species in exhaust gas. This study focuses on the characteristics of hydrogen combustion under ESGI operating conditions using a CVC(Constant Volume Chamber). Measurements of pressure variation and flame speed have been performed for various oxygen and hydrogen concentrations. Results have been analyzed to understand ignition and combustion characteristics of hydrogen under lower oxygen conditions. The CVC experiments showed that under lower oxygen concentration, amount of active chemicals in the combustion chamber was a crucial factor to influence hydrogen combustion as well as hydrogen/oxygen ratio. It is also found that increase in volume fraction of oxygen is effective for the fast and stable burning of hydrogen by virtue of increase in flame speed.

A Stability Study of Rider Arch under the Increased Load of Checker Brick in Regernerator of the Reformed Glass Melting Furnace (유리 용해로 축열실 상재 하중 증가에 따른 Rider Arch의 안전성 검토)

  • Lee, Sun-Yung;Kim, Jong-Ock;Lim, Dae-Young;Kim, Taik-Nam;Park, Won-Kya
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.125-131
    • /
    • 1997
  • The regenerator is important part of the glass melting furnace to increase the temperature of the intake air through the combustion flame. The insulation, checker brick, prevention of the air leak has been studied to decrease the fuel consumption in glass melting industries. Thus the new types of checker brick and the design of the rider arch has been studied to prolong the life of the glass melting furnace. The height of the regenerator increased from 5.64 m to 7.89 m in the reforming of the glass melting furnace. Thus the stability of the rider arch is studied under the condition of increased load of checker brick in this research. The rider arch was estimated to be stable inspite of the increase of load according to the calculation. The max. sustained compressive stress of the rider arch is 163 kg/$cm^2$ and the max. sustained shear stress is 6.37 kg/$cm^2$.

  • PDF

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

The Economic Feasibility Analysis of 100-MW Power-to-Gas System (100 MW급 Power-to-Gas 시스템의 사전 경제성 분석)

  • Ko, Areum;Park, Sung-Ho;Kim, Suhyun
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2020
  • According to the Korean Renewable Energy 3020 Implementation Plan, the installation capacity of renewable energy is expected to increase whereas technology for storing excess electricity and stabilizing the power supply of renewable energy sources is extremely required. Power-to-Gas is one of energy storage technologies where electricity is converted into gas fuel such as hydrogen and methane. Basically, Power-to-Gas system could be effectively utilized to store excess electricity generated by an imbalance between supply and demand. In this study, the economic feasibility analysis of Power-to-Gas reflecting the domestic situation was carried out. Total revenue requirement method was utilized to estimate the levelized cost of hydrogen. Validation on the economic analysis method in this study was conducted by comparison of the result, which is published by the International Energy Agency. The levelized cost of hydrogen of a 100-MW Power-to-Gas system reflecting the current economic status in Korea is 8,344 won kg-1. The sensitivity analysis was carried out, applying the main analysis economic factors such as electricity cost, electrolyser cost, and operating year. Based on the sensitivity analysis, the conditions for economic feasibility were suggested by comparing the cost of producing hydrogen using renewable energy with the cost of producing natural gas reformed hydrogen with carbon capture and storage.

Analysis of CO2 Emission Depending on Hydrogen Production Methods in Korea (국내 수소 생산에 따른 CO2 발생량 분석)

  • Han, Ja-Ryoung;Park, Jinmo;Kim, Yohan;Lee, Young Chul;Kim, Hyoung Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Because of environmental pollution problem, interests in hydrogen energy has been concentrating sharply. Especially in Korea, the market related with fuel cell vehicles and hydrogen refueling stations is increasing actively under the government-led. However, the actual contributions to environmental improvement effect of hydrogen energy is required to be evaluated with representing reality. In this sense, lots of conventional analyzing tools have some limitations to adapt in Korea's situation directly. It is caused by the differences of raw energy market between the US and Korea. That is, most of analytic tools are developed by representing energy market of the US, where can produce variety of raw feed energy sources. Therefore, in this paper, we propose mass balance based numerical analyzing method, which is suitable for the actual hydrogen production process in Korea for exact evaluation of $CO_2$ emission amount in this country. Using proposed method, we has demonstrated reformed hydrogen from natural gas, LPG and naphtha, electrolysis-based hydrogen, and COG-based hydrogen. Furthermore, with the comparison of GREET program analysis results, robustness of numerical analysis method is demonstrated.